
Xiao-hua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Potassium-Ion Storage of the 3D Carbon Superstructure by Manipulating the Nitrogen-Doped Species and Morphology. Nano-Micro Letters, 2021, 13, 1.	27.0	570
2	Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions. Advanced Materials, 2021, 33, e2100445.	21.0	351
3	Unraveling the Potassium Storage Mechanism in Graphite Foam. Advanced Energy Materials, 2019, 9, 1900579.	19.5	133
4	Sulfurâ€Impregnated, Sandwichâ€Type, Hybrid Carbon Nanosheets with Hierarchical Porous Structure for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1301988.	19.5	130
5	Improving Polysulfides Adsorption and Redox Kinetics by the Co ₄ N Nanoparticle/Nâ€Doped Carbon Composites for Lithiumâ€Sulfur Batteries. Small, 2019, 15, e1901454.	10.0	130
6	Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors. Carbon, 2017, 117, 163-173.	10.3	105
7	High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, and sulfur Co-doped carbon. Carbon, 2020, 164, 1-11.	10.3	71
8	Selfâ€Healing SeO ₂ Additives Enable Zinc Metal Reversibility in Aqueous ZnSO ₄ Electrolytes. Advanced Functional Materials, 2022, 32, .	14.9	71
9	Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries. Journal of Power Sources, 2016, 322, 138-146.	7.8	66
10	Self-assembly of Fe3O4 nanorods on graphene for lithium ion batteries with high rate capacity and cycle stability. Electrochemistry Communications, 2013, 28, 139-142.	4.7	62
11	Optimized Kinetics Match and Charge Balance Toward Potassium Ion Hybrid Capacitors with Ultrahigh Energy and Power Densities. Small, 2020, 16, e2003724.	10.0	62
12	Oxygen-Containing Functional Groups Regulating the Carbon/Electrolyte Interfacial Properties Toward Enhanced K+ Storage. Nano-Micro Letters, 2021, 13, 192.	27.0	60
13	Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. Journal of Power Sources, 2015, 277, 131-138.	7.8	52
14	Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors. Journal of Power Sources, 2017, 361, 70-79.	7.8	48
15	Enhanced Potassium Ion Battery by Inducing Interlayer Anionic Ligands in MoS _{1.5} Se _{0.5} Nanosheets with Exploration of the Mechanism. Advanced Energy Materials, 2020, 10, 1904162.	19.5	48
16	Redox-active p-phenylenediamine functionalized reduced graphene oxide film through covalently grafting for ultrahigh areal capacitance Zn-ion hybrid supercapacitor. Journal of Power Sources, 2021, 488, 229426.	7.8	47
17	Sewable and Cuttable Flexible Zinc-Ion Hybrid Supercapacitor Using a Polydopamine/Carbon Cloth-Based Cathode. ACS Sustainable Chemistry and Engineering, 2020, 8, 16028-16036.	6.7	43
18	Mesoporous LiFePO4 Microspheres Embedded Homogeneously with 3D CNT Conductive Networks for Enhanced Electrochemical Performance. Electrochimica Acta, 2014, 137, 344-351.	5.2	41

#	Article	IF	CITATIONS
19	Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Throughâ€Plane Conductivity of 3D Hybridized Structure. Small, 2020, 16, e1903315.	10.0	40
20	Compact-Nanobox Engineering of Transition Metal Oxides with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2018, 10, 8955-8964.	8.0	38
21	3D interconnected mesoporous Si/SiO2 coated with CVD derived carbon as an advanced anode material of Li-ion batteries. Ceramics International, 2018, 44, 3548-3555.	4.8	34
22	3D Selenium Sulfide@Carbon Nanotube Array as Longâ€Life and Highâ€Rate Cathode Material for Lithium Storage. Advanced Functional Materials, 2018, 28, 1805018.	14.9	34
23	N-doped carbon sheets arrays embedded with CoP nanoparticles as high-performance cathode for Li-S batteries via triple synergistic effects. Journal of Power Sources, 2020, 455, 227959.	7.8	34
24	Synergistic effect of three-dimensional cobalt diselenide/carbon nanotube arrays composites for enhanced hydrogen evolution reaction. Electrochimica Acta, 2018, 285, 254-261.	5.2	30
25	Confining Sb nanoparticles in bamboo-like hierarchical porous aligned carbon nanotubes for use as an anode for sodium ion batteries with ultralong cycling performance. Journal of Materials Chemistry A, 2021, 9, 2152-2160.	10.3	28
26	Hydrothermal controlled synthesis of Fe3O4 nanorods/graphene nanocomposite for high-performance lithium ion batteries. Ceramics International, 2014, 40, 14713-14725.	4.8	27
27	NiO hollow microspheres interconnected by carbon nanotubes as an anode for lithium ion batteries. Electrochimica Acta, 2016, 213, 75-82.	5.2	27
28	Achieving ultrahigh volumetric performance of graphene composite films by an outer–inner dual space utilizing strategy. Journal of Materials Chemistry A, 2020, 8, 9661-9669.	10.3	24
29	Self-assembled synthesis of diamond-like MnCo2O4 as anode active material for lithium-ion batteries with high cycling stability. Journal of Alloys and Compounds, 2017, 722, 387-393.	5.5	23
30	Enhanced sodium and potassium ions storage of soft carbon by a S/O co-doped strategy. Electrochimica Acta, 2021, 367, 137526.	5.2	23
31	Structure and properties of polypropyleneâ€wrapped carbon nanotubes composite. Journal of Applied Polymer Science, 2009, 113, 3809-3814.	2.6	22
32	3D Se-doped NiCoP nanoarrays on carbon cloth for efficient alkaline hydrogen evolution. Journal of Central South University, 2021, 28, 2345-2359.	3.0	22
33	Preparation and shear properties of carbon nanotubes/poly(butyl methacrylate) hybrid material. Polymer Composites, 2008, 29, 972-977.	4.6	21
34	In-situ construction of interconnected N-doped porous carbon-carbon nanotubes networks derived from melamine anchored with MoS2 for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 744, 75-81.	5.5	21
35	Highly reversible zinc metal anodes enabled by protonated melamine. Journal of Materials Chemistry A, 2022, 10, 6636-6640.	10.3	21
36	Building three-dimensional carbon nanotubes-interwoven Ni3S2 micro-nanostructures for improved sodium storage performance. Electrochimica Acta, 2020, 339, 135938.	5.2	20

#	Article	IF	CITATIONS
37	Metallic-State MoS ₂ Nanosheets with Atomic Modification for Sodium Ion Batteries with a High Rate Capability and Long Lifespan. ACS Applied Materials & Interfaces, 2021, 13, 19894-19903.	8.0	20
38	A facile method to synthesize Fe3O4/graphene composites in normal pressure with high rate capacity and cycling stability. Materials Letters, 2013, 91, 315-318.	2.6	19
39	Room temperature ultrafast synthesis of N- and O-rich graphene films with an expanded interlayer distance for high volumetric capacitance supercapacitors. Nanoscale, 2019, 11, 16515-16522.	5.6	19
40	Fe/Fe ₃ C Embedded in N-Doped Worm-like Porous Carbon for High-Rate Catalysis in Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24710-24722.	8.0	19
41	3D modified graphene-carbon fiber hybridized skeleton/PDMS composites with high thermal conductivity. Composites Science and Technology, 2022, 225, 109499.	7.8	19
42	Capacity-increasing robust porous SiO ₂ /Si/graphene/C microspheres as an anode for Li-ion batteries. RSC Advances, 2016, 6, 45077-45084.	3.6	18
43	Free-standing MnO2/nitrogen-doped graphene paper hybrids as binder-free electrode for supercapacitor applications. Materials Letters, 2018, 231, 114-118.	2.6	16
44	Covalent attachment of poly (acrylic acid) onto multiwalled carbon nanotubes functionalized with formaldehyde via electrophilic substitution reaction. Journal of Materials Science, 2007, 42, 9447-9452.	3.7	14
45	One-step synthesis of Fe3O4@C/reduced-graphite oxide nanocomposites for high-performance lithium ion batteries. Journal of Physics and Chemistry of Solids, 2014, 75, 588-593.	4.0	13
46	Nitrogen-doped carbon coated LiFePO ₄ /carbon nanotube interconnected nanocomposites for high performance lithium ion batteries. New Journal of Chemistry, 2015, 39, 9782-9788.	2.8	13
47	Redox-active engineered holey reduced graphene oxide films for K+ storage. Carbon, 2021, 174, 173-179.	10.3	12
48	Saqima-like Co3O4/CNTs secondary microstructures with ultrahigh initial Coulombic efficiency as an an anode for lithium ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 417-427.	2.5	11
49	N-rich reduced graphene oxide film with cross-coupled porous networks as free-standing electrode for high performance supercapacitors. Applied Surface Science, 2021, 563, 150303.	6.1	9
50	An ultrasonication-aided self-assembly strategy toward a PTCDA/RGO film cathode for organic K-ion full batteries. Chemical Communications, 2022, 58, 8348-8351.	4.1	9
51	Alignment and structural control of nitrogen-doped carbon nanotubes by utilizing precursor concentration effect. Nanotechnology, 2014, 25, 475601.	2.6	8
52	Facile synthesis of single-crystalline Co3O4 cubes as high-performance anode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 2321-2328.	2.5	8
53	Graphitic carbon-wrapped NiO embedded three dimensional nitrogen doped aligned carbon nanotube arrays with long cycle life for lithium ion batteries. RSC Advances, 2018, 8, 28440-28446.	3.6	8
54	Preparation of graphene/copper composites using solution-combusted porous sheet-like cuprous oxide. Journal of Materials Science, 2019, 54, 396-403.	3.7	8

#	Article	IF	CITATIONS
55	Co nanoparticles anchored on the Co-Nx active centers grafted nitrogen-doped graphene with enhanced performance for lithium-sulfur battery. Journal of Alloys and Compounds, 2022, 890, 161552.	5.5	8
56	Ultrafast Activating Strategy to Significantly Enhance the Electrocatalysis of Commercial Carbon Cloth for Oxygen Evolution Reaction and Overall Water Splitting. ChemNanoMat, 2020, 6, 542-549.	2.8	7
57	Understanding the effect of I/N dual-doped hard carbon for high performance K-ion storage. Electrochimica Acta, 2021, 394, 139146.	5.2	7
58	Enhanced performance of lithium–sulfur batteries based on single-sided chemical tailoring, and organosiloxane grafted PP separator. RSC Advances, 2020, 10, 18115-18123.	3.6	6
59	Insight into the Effect of lodine Doping Soft Carbon and lodine Functional Separator for Lithium‣ulfur Batteries. Batteries and Supercaps, 2022, 5, .	4.7	6
60	Customizing oxygen–containing functional groups for reduced graphene oxide film supercapacitor with high volumetric performance. Journal of Energy Storage, 2022, 52, 104642.	8.1	6
61	A Simple Approach towards Highly Dense Graphene Films for High Volumetric Performance Supercapacitors. ChemElectroChem, 2022, 9, .	3.4	5
62	MOFâ€Đerived Potassiophilic CuO Nanoparticles on Carbon Fiber Cloth as Host for Stabilizing Potassium Metal Anode. ChemElectroChem, 2022, 9, .	3.4	5
63	High-performance porous carbon for supercapacitors prepared by one-step pyrolysis of PF/gelatin blends. Journal of Central South University, 2012, 19, 41-45.	3.0	3
64	A Bottomâ€up Inâ€situ Preparation of Grapheneâ€like Porous Carbon for Ultrahigh Surface Area Specific Capacitance Supercapacitors. ChemNanoMat, 2020, 6, 1789-1796.	2.8	2
65	Sulfur cathodes based on dual-functional GMs-MnOOH for high performance lithium sulfur batteries. Materials Today Communications, 2021, 29, 102857.	1.9	2
66	THE COMPARING OF ACOUSTIC PHONON TRANSPORT ABOUT MONOCHROMATIC MODE AND MIXING MODE THROUGH A DOUBLE T-SHAPED QUANTUM WAVEGUIDE. Modern Physics Letters B, 2011, 25, 2313-2321.	1.9	1
67	Ballistic thermal transport contributed by the in-plane waves in a quantum wire modulated with an acoustic nanocavity. Journal of Applied Physics, 2012, 112, 124315.	2.5	1
68	Lithium Storage: 3D Selenium Sulfide@Carbon Nanotube Array as Long-Life and High-Rate Cathode Material for Lithium Storage (Adv. Funct. Mater. 43/2018). Advanced Functional Materials, 2018, 28, 1870310.	14.9	1
69	Water intercalation strategy to fabricate low-potential and dense grapheme film anode for high energy density K-ion batteries. Electrochimica Acta, 2021, 403, 139626.	5.2	0
70	A 3D graphene/polyimide fiber framework with improved thermal conductivity and mechanical performance. Journal of Central South University, 2022, 29, 1761-1777.	3.0	0