
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685850/publications.pdf Version: 2024-02-01

ΡΛΙΠ ΔΥΛΝ

#	Article	IF	CITATIONS
1	Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse. Cell, 2006, 127, 277-289.	28.9	554
2	Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nature Genetics, 2006, 38, 770-778.	21.4	262
3	Catheter-related Upper Extremity Deep Venous Thrombosis in Cancer Patients: A Prospective Study Based on Doppler US. Radiology, 2001, 220, 655-660.	7.3	252
4	The remarkable cochlear amplifier. Hearing Research, 2010, 266, 1-17.	2.0	208
5	Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4496-4501.	7.1	162
6	Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes. Cell, 2015, 163, 894-906.	28.9	158
7	Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5825-5830.	7.1	120
8	Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature, 2008, 456, 255-258.	27.8	114
9	Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. ELife, 2017, 6, .	6.0	108
10	Two-level atom saturated by a fluctuating resonant laser beam. Calculation of the fluorescence spectrum. Journal of Physics B: Atomic and Molecular Physics, 1977, 10, 155-170.	1.6	106
11	Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9695-9700.	7.1	101
12	Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome. Journal of Clinical Investigation, 2018, 128, 3382-3401.	8.2	97
13	Importance of Binaural Hearing. Audiology and Neuro-Otology, 2015, 20, 3-6.	1.3	94
14	Effect of high frequency irradiation on the dynamical properties of weakly bound electrons. Journal De Physique, 1976, 37, 993-1009.	1.8	91
15	Distorted Odorant Perception. JAMA Otolaryngology, 2005, 131, 107.	1.2	87
16	Genetic Dissection of the Function of Hindbrain Axonal Commissures. PLoS Biology, 2010, 8, e1000325.	5.6	85
17	Auditory Distortions: Origins and Functions. Physiological Reviews, 2013, 93, 1563-1619.	28.8	84
18	Quantitative assessment of human cochlear function by evoked otoacoustic emissions. Hearing Research, 1991, 52, 99-112.	2.0	81

#	Article	IF	CITATIONS
19	Wavelet analysis of real ear and synthesized click evoked otoacoustic emissions. Hearing Research, 1994, 73, 141-147.	2.0	79
20	Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements. Hearing Research, 1996, 94, 125-139.	2.0	78
21	Middle ear influence on otoacoustic emissions. I: Noninvasive investigation of the human transmission apparatus and comparison with model results. Hearing Research, 2000, 140, 189-201.	2.0	75
22	CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Molecular Medicine, 2017, 9, 1711-1731.	6.9	66
23	Functional anatomy of auditory brainstem nuclei: application to the anatomical basis of brainstem auditory evoked potentials. Auris Nasus Larynx, 2001, 28, 85-94.	1.2	65
24	Hearing Is Normal without Connexin30. Journal of Neuroscience, 2013, 33, 430-434.	3.6	65
25	Frequency Specificity of Human Distortion Product Otoacoustic Emissions. International Journal of Audiology, 1993, 32, 12-26.	1.7	64
26	Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8010-8017.	7.1	63
27	Corticosteroid Treatment in Nasal Polyposis With a Three-Year Follow-Up Period. Laryngoscope, 2003, 113, 683-687.	2.0	62
28	The <scp>CD</scp> 2 isoform of protocadherinâ€15 is an essential component of the tipâ€link complex in mature auditory hair cells. EMBO Molecular Medicine, 2014, 6, 984-992.	6.9	62
29	Spontaneous and Evoked Otoacoustic Emissions in Preterm Neonates. Laryngoscope, 1992, 102, 182???186.	2.0	59
30	Click-evoked otoacoustic emissions and the influence of high-frequency hearing losses in humans. Journal of the Acoustical Society of America, 1997, 101, 2771-2777.	1.1	56
31	Transientâ€evoked otoacoustic emissions and highâ€frequency acoustic trauma in the guinea pig. Journal of the Acoustical Society of America, 1995, 97, 3012-3020.	1.1	54
32	Characteristics of Transient-evoked Otoacoustic Emissions (TEOEs) in Neonates. Acta Oto-Laryngologica, 1997, 117, 25-30.	0.9	53
33	Middle-ear influence on otoacoustic emissions. II: Contributions of posture and intracranial pressure. Hearing Research, 2000, 140, 202-211.	2.0	53
34	Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth. Journal of Cell Biology, 2016, 212, 231-244.	5.2	51
35	CD1 hearing-impaired mice. I: Distortion product otoacoustic emission levels, cochlear function and morphology. Hearing Research, 1998, 120, 37-50.	2.0	50
36	Correlation between Nasosinusal Symptoms and Topographic Diagnosis in Chronic Rhinosinusitis. Annals of Otology, Rhinology and Laryngology, 2005, 114, 74-83.	1.1	45

#	Article	IF	CITATIONS
37	The behavior of spontaneous otoacoustic emissions during and after postural changes. Journal of the Acoustical Society of America, 2000, 107, 3308-3316.	1.1	44
38	Physiopathological significance of distortion-product otoacoustic emissions at 2 f1–f2 produced by high- versus low-level stimuli. Journal of the Acoustical Society of America, 2003, 113, 430-441.	1.1	43
39	Unstable distortion-product otoacoustic emission phase in Menière's disease. Hearing Research, 2011, 277, 88-95.	2.0	43
40	Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones. Hearing Research, 1997, 107, 41-45.	2.0	42
41	Auditory Screening in Neonates by Means of Transient Evoked Otoacoustic Emissions: A Report of 2,842 Recordings. Annals of Otology, Rhinology and Laryngology, 1999, 108, 525-531.	1.1	41
42	Monitoring of functional changes after transient ischemia in gerbil cochlea. Brain Research, 1997, 751, 20-30.	2.2	40
43	Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells. EMBO Molecular Medicine, 2009, 1, 125-138.	6.9	39
44	Influence of allergy on the symptoms and treatment of nasal polyposis. Acta Oto-Laryngologica, 2006, 126, 839-844.	0.9	37
45	Long-term administration of magnesium after acoustic trauma caused by gunshot noise in guinea pigs. Hearing Research, 2009, 247, 137-145.	2.0	36
46	Temporal patterns of transient-evoked otoacoustic emissions in normal and impaired cochleae. Hearing Research, 1993, 70, 109-120.	2.0	35
47	Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7765-7774.	7.1	35
48	Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25948-25957.	7.1	35
49	Evoked otoacoustic emissions in guinea pig: Basic characteristics. Hearing Research, 1990, 44, 151-160.	2.0	34
50	Hypothetical roles of middle ear muscles in the guinea-pig. Hearing Research, 1992, 59, 59-69.	2.0	34
51	Hanle resonances for a J=0 to J=1 transition excited by a fluctuating laser beam. Journal of Physics B: Atomic and Molecular Physics, 1977, 10, 171-185.	1.6	32
52	Distortion-product Otoacoustic Emissions in Neonates: Normative Data. Acta Oto-Laryngologica, 1992, 112, 739-744.	0.9	32
53	The efferent-mediated suppression of otoacoustic emissions in awake guinea pigs and its reversible blockage by gentamicin. Experimental Brain Research, 1996, 109, 9-16.	1.5	32
54	Analysis of possible interactions of an attentional task with cochlear micromechanics. Hearing Research, 1992, 57, 269-275.	2.0	31

#	Article	IF	CITATIONS
55	Detection of intracochlear and intracranial pressure changes with otoacoustic emissions: a gerbil model. Hearing Research, 2002, 167, 180-191.	2.0	31
56	Medial olivocochlear efferent activity in awake guinea pigs. NeuroReport, 2004, 15, 1379-1382.	1.2	31
57	Direct evidence of cubic difference tone propagation by intracochlear acoustic pressure measurements in the guineaâ€pig. European Journal of Neuroscience, 1998, 10, 1764-1770.	2.6	30
58	Intracochlear Acoustic Pressure Measurements: Transfer Functions of the Middle Ear and Cochlear Mechanics. Audiology and Neuro-Otology, 1999, 4, 123-128.	1.3	30
59	Clinical Significance of Otoacoustic Emissions. Ear and Hearing, 1990, 11, 155-158.	2.1	29
60	Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise. Brain Research, 2000, 852, 140-150.	2.2	29
61	Ultrarare heterozygous pathogenic variants of genes causing dominant forms of early-onset deafness underlie severe presbycusis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31278-31289.	7.1	29
62	Ontogenesis of rat cochlea. A quantitative study of the organ of Corti. Developmental Brain Research, 1997, 99, 29-37.	1.7	27
63	The behavior of evoked otoacoustic emissions during and after postural changes. Journal of the Acoustical Society of America, 2001, 110, 973-980.	1.1	27
64	Origin of cubic difference tones generated by high-intensity stimuli: Effect of ischemia and auditory fatigue on the gerbil cochlea. Journal of the Acoustical Society of America, 2001, 110, 1477-1488.	1,1	26
65	Non-specific bronchial hyperresponsiveness is a risk factor for steroid insensitivity in nasal polyposis. Acta Oto-Laryngologica, 2004, 124, 290-296.	0.9	26
66	Non-invasive measurements of intralabyrinthine pressure changes by electrocochleography and otoacoustic emissions. Hearing Research, 2009, 251, 51-59.	2.0	26
67	Effects of glycerol intake and body tilt on otoacoustic emissions reflect labyrinthine pressure changes in MeniÔre's disease. Hearing Research, 2009, 250, 38-45.	2.0	25
68	Patient satisfaction and functional results with the bone-anchored hearing aid (BAHA). European Annals of Otorhinolaryngology, Head and Neck Diseases, 2011, 128, 107-113.	0.7	24
69	CD1 hearing-impaired mice. II: Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy. Hearing Research, 1998, 120, 51-61.	2.0	22
70	Screening of Olfactory function Using the Biolfa®Olfactory Test: Investigations in Patients with Dysosmia. Acta Oto-Laryngologica, 2004, 124, 1063-1071.	0.9	22
71	Distortion-product otoacoustic emission spectra and high-resolution audiometry in noise-induced hearing loss. Hearing Research, 2005, 209, 68-75.	2.0	22
72	Tinnitus and Cerebellar Developmental Venous Anomaly. JAMA Otolaryngology, 2006, 132, 550.	1.2	21

#	Article	IF	CITATIONS
73	Transmission of infrasonic pressure waves from cerebrospinal to intralabyrinthine fluids through the human cochlear aqueduct: Non-invasive measurements with otoacoustic emissions. Hearing Research, 2007, 233, 30-39.	2.0	21
74	An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9307-9312.	7.1	21
75	Spatio-temporal distribution of cellular retinoid binding protein gene transcripts in the developing and the adult cochlea. Morphological and functional consequences in CRABP- and CRBPI-null mutant mice. European Journal of Neuroscience, 2000, 12, 2793-2804.	2.6	20
76	Jugular and Portal Vein Volume, Middle Cerebral Vein Velocity, and Intracranial Pressure in Dry Immersion. Aerospace Medicine and Human Performance, 2017, 88, 457-462.	0.4	20
77	Vulnerability of the gerbil cochlea to sound exposure during reversible ischemia. Hearing Research, 1999, 136, 65-74.	2.0	18
78	Ototoxic effects of cisplatin in a Sprague–Dawley rat animal model as revealed by ABR and transiently evoked otoacoustic emission measurements. Hearing Research, 2002, 170, 70-82.	2.0	18
79	Effect of click intensity on click-evoked otoacoustic emission waveforms: implications for the origin of emissions. Hearing Research, 2003, 175, 215-225.	2.0	18
80	Auditory neuropathies. Current Opinion in Neurology, 2012, 25, 50-56.	3.6	18
81	Vasospasm of labyrinthine artery in cerebellopontine angle surgery: evidence brought by distortion-product otoacoustic emissions. European Archives of Oto-Rhino-Laryngology, 2014, 271, 2627-2635.	1.6	18
82	Frequency specificity of distortion-product otoacoustic emissions produced by high-level tones despite inefficient cochlear electromechanical feedback. Journal of the Acoustical Society of America, 2004, 116, 1639-1648.	1.1	17
83	Abnormal fast fluctuations of electrocochleography and otoacoustic emissions in Menière's disease. Hearing Research, 2015, 327, 199-208.	2.0	17
84	Contralateral suppression of transient evoked otoacoustic emissions in guinea-pigs: effects of gentamicin. International Journal of Audiology, 1994, 28, 267-271.	0.7	16
85	Osteoma of the internal auditory canal. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2010, 127, 15-19.	0.7	16
86	Results of Electrocochleography in Ménière's Disease after Successful Vertigo Control by Single Intratympanic Gentamicin Injection. Audiology and Neuro-Otology, 2011, 16, 49-54.	1.3	16
87	Frequency-specific Information from Click Evoked Otoacoustic Emissions in Noise-induced Hearing Loss. International Journal of Audiology, 1999, 38, 243-250.	1.7	15
88	Mice with a deletion of the major central myelin protein exhibit hypersensitivity to noxious thermal stimuli: involvement of central sensitization. Neurobiology of Disease, 2014, 65, 55-68.	4.4	15
89	Noninvasive detection of alarming intracranial pressure changes by auditory monitoring in early management of brain injury: a prospective invasive versus noninvasive study. Critical Care, 2017, 21, 35.	5.8	15
90	Audiological Assessment of Eleven Congenital Hypothyroid Infants Before and After Treatment. Acta Oto-Laryngologica, 1993, 113, 39-42.	0.9	14

PAUL AVAN

#	Article	IF	CITATIONS
91	Assessment of Postoperative Pain After Laryngeal Surgery for Cancer. JAMA Otolaryngology, 1998, 124, 794.	1.2	14
92	Validation of a noninvasive test routinely used in otology for the diagnosis of cerebrospinal fluid shunt malfunction in patients with normal pressure hydrocephalus. Journal of Neurosurgery, 2016, 124, 342-349.	1.6	13
93	Acoustic phase shift: Objective evidence for intralabyrinthine pressure disturbance in Menière's disease provided by otoacoustic emissions. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2012, 129, 17-21.	0.7	12
94	A model of cochlear function assessment during reversible ischemia in the Mongolian gerbil. Brain Research Protocols, 1999, 4, 249-257.	1.6	10
95	Measurement of endolymphatic pressure. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2015, 132, 81-84.	0.7	10
96	Evaluation of the surgical treatment of nasal polyposis. II: Influence of a non-specific bronchial hyperresponsiveness. Acta Oto-Laryngologica, 2007, 127, 847-854.	0.9	9
97	Rapid exhaustion of auditory neural conduction in a prototypical mitochondrial disease, Friedreich ataxia. Clinical Neurophysiology, 2018, 129, 1121-1129.	1.5	9
98	On the spectral periodicity of transient-evoked otoacoustic emissions from normal and damaged cochleas. Journal of the Acoustical Society of America, 2000, 108, 1117.	1.1	8
99	Medical Treatment of Stage I Nasal Polyposis over a 3-Year Follow-Up Period. Orl, 2004, 66, 27-34.	1.1	8
100	Electrophysiological Monitoring of Cochlear Function as a Non-invasive Method to Assess Intracranial Pressure Variations. Acta Neurochirurgica Supplementum, 2012, 114, 131-134.	1.0	8
101	Vestibular-evoked myogenic potential triggered by galvanic vestibular stimulation may reveal subclinical alterations in human T-cell lymphotropic virus type 1-associated myelopathy. PLoS ONE, 2018, 13, e0200536.	2.5	8
102	Biasing the semicircular canal cupula in excitatory direction decreases the gain of the vestibuloocular reflex for head impulses. Journal of Vestibular Research: Equilibrium and Orientation, 2020, 29, 281-286.	2.0	8
103	Auditory Threshold Evaluation by Distortion-product Oto-acoustic Emissions Using Decision Support System. Acta Oto-Laryngologica, 1994, 114, 360-365.	0.9	7
104	Statistical Evaluation of Hearing Screening by Distortion Product Otoacoustic Emissions. Annals of Otology, Rhinology and Laryngology, 1997, 106, 1052-1062.	1.1	7
105	Cochlear function in Ménière's disease. International Journal of Audiology, 2012, 51, 373-378.	1.7	7
106	Modifications of cochlear microphonic frequency responses following transient changes of hydrostatic pressure in the perilymph. Hearing Research, 1986, 23, 105-113.	2.0	6
107	On the shape of (evoked) otoacoustic emission spectra. Hearing Research, 1994, 81, 208-214.	2.0	6
108	Noninvasive in-ear monitoring of intracranial pressure during microgravity in parabolic flights. Journal of Applied Physiology, 2018, 125, 353-361.	2.5	6

#	Article	IF	CITATIONS
109	Auditory Brainstem Changes in Timing may Underlie Hyperacusis in a Salicylate-induced Acute Rat Model. Neuroscience, 2020, 426, 129-140.	2.3	6
110	Effect of elevated potassium concentration in the perilymph on the nonlinearity of cochlear microphonics in the guinea-pig cochlea. Hearing Research, 1988, 35, 159-164.	2.0	5
111	Possible Effects of Cochlear Hydrops and Related Phenomena. Seminars in Hearing, 2001, 22, 405-414.	1.2	5
112	Laparoscopic implantation of neural electrodes on pelvic nerves: an experimental study on the obturator nerve in a chronic minipig model. Surgical Endoscopy and Other Interventional Techniques, 2011, 25, 3706-3712.	2.4	5
113	Generalization of the primary tone phase variation method: An exclusive way of isolating the frequency-following response components. Journal of the Acoustical Society of America, 2018, 144, 2400-2412.	1.1	5
114	Decreased Reemerging Auditory Brainstem Responses Under Ipsilateral Broadband Masking as a Marker of Noise-Induced Cochlear Synaptopathy. Ear and Hearing, 2021, 42, 1062-1071.	2.1	5
115	Magnitudes and phases of human distortion-product otoacoustic emissions at 2f1â^'f2 against f2/f1: effects of an audiometric notch. Hearing Research, 2002, 167, 46-56.	2.0	4
116	Hearing status after an industrial explosion: experience of the AZF explosion, 21 September 2001, France. International Archives of Occupational and Environmental Health, 2008, 81, 409-414.	2.3	4
117	Cochlear implantation through the round window with a straight slotted electrode array: optimizing the surgical procedure. European Archives of Oto-Rhino-Laryngology, 2016, 273, 853-858.	1.6	4
118	Non-invasive intraoperative monitoring of cochlear function by cochlear microphonics during cerebellopontine-angle surgery. European Archives of Oto-Rhino-Laryngology, 2018, 275, 59-69.	1.6	4
119	Subcortical neural generators of the envelope-following response in sleeping children: A transfer function analysis. Hearing Research, 2021, 401, 108157.	2.0	4
120	Wideband tympanometry patterns in relation to intracranial pressure. Hearing Research, 2021, 408, 108312.	2.0	4
121	Audition: Hearing and Deafness. , 2013, , 675-741.		3
122	Transient Abnormalities in Masking Tuning Curve in Early Progressive Hearing Loss Mouse Model. BioMed Research International, 2018, 2018, 1-12.	1.9	3
123	Compensating for Deviant Middle Ear Pressure in Otoacoustic Emission Measurements, Data, and Comparison to a Middle Ear Model. Otology and Neurotology, 2012, 33, 504-511.	1.3	2
124	Frequency selectivity of tonal language native speakers probed by suppression tuning curves of spontaneous otoacoustic emissions. Hearing Research, 2020, 398, 108100.	2.0	2
125	Avaliação de Crianças com Indicadores de Risco para Deficiência Auditiva Atendidas em um Serviço de Referência em Triagem Auditiva Neonatal. Distúrbios Da Comunicação, 2020, 31, 630-640.	0.1	2
126	Role of suppressive interactions in the cochlear microphonic response to wide-band clicks. Hearing Research, 1985, 19, 227-234.	2.0	1

#	Article	IF	CITATIONS
127	Fine Alterations of Distortion-product Otoacoustic Emissions after Moderate Acoustic Overexposure in Guinea Pigs: Alteraciones moderadas de los productos de distorsion de las emisiones otoacusticas después de sobrexposiciÃ ³ n acÃ [®] stica moderada en cobayos. International Journal of Audiology, 2001, 40, 113-122.	1.7	1
128	The Estimation of the Time Constant of the Human Inner Ear Pressure Change by Noninvasive Technique. Modelling and Simulation in Engineering, 2009, 2009, 1-8.	0.7	1
129	Direct testing of the biasing effect of manipulations of endolymphatic pressure on cochlear mechanical function. AIP Conference Proceedings, 2015, , .	0.4	1
130	Audition: Hearing and Deafness. , 2016, , 793-861.		1
131	Resistance of Gerbil Auditory Function to Reversible Decrease in Cochlear Blood Flow. Audiology and Neuro-Otology, 2017, 22, 89-95.	1.3	1
132	Auditory biophysics of endolymphatic hydrops. Journal of Vestibular Research: Equilibrium and Orientation, 2021, 31, 277-281.	2.0	1
133	Correlations among Distortion Product Otoacoustic Emissions, Thresholds and Sensory Cell Impairments. Noise and Health, 2001, 3, 1-18.	0.5	1
134	Impaired auditory neural performance, another dimension of hearing loss in type-2 diabetes mellitus. Diabetes and Metabolism, 2022, 48, 101360.	2.9	1
135	Classification of technical pitfalls in objective universal hearing screening by otoacoustic emissions, using an ARMA model of the stimulus waveform and bootstrap cross-validation. Medical Engineering and Physics, 2005, 27, 669-677.	1.7	0
136	Meniere's attack – a volume or pressure phenomenon?. Journal of Vestibular Research: Equilibrium and Orientation, 2021, 31, 283-287.	2.0	0
137	A GLIMPSE OF INTRACOCHLEAR PRESSURE THROUGH MIDDLE EAR ASSESSMENT, EXPERIMENTS AND MODELS. , 2004, , .		0
138	ANALYSIS OF THE EAR'S IMPEDANCE THROUGH MULTIFREQUENCY IMMITTANCE MEASUREMENTS: ATTEMPT AT MODELING THE STAPES' ANNULAR LIGAMENT. , 2004, , .	S	0
139	OTOÉMISSIONS ET AUDIOMÉTRIE DES TRAUMATISMES ACOUSTIQUES : CONSÉQUENCES POUR LES MO DE GENÃ^SE D'OTOÉMISSIONS. European Physical Journal Special Topics, 1992, 02, C1-169-C1-172.	DDÃ^LES 0.2	0
140	Apports de l'analyse temporelle des otoémissions acoustiques provoquées transitoires Ã l'identification de leurs sources. European Physical Journal Special Topics, 1994, 04, C5-403-C5-406.	0.2	0
141	Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth. Journal of General Physiology, 2016, 147, 1472OIA7.	1.9	0
142	Nonconventional Clinical Applications of Otoacoustic Emissions: From Middle Ear Transfer to Cochlear Homeostasis to Access to Cerebrospinal Fluid Pressure. , 2020, , 273-301.		0