Luis Llanes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementation of Massive Nanoindentation Coupled With Statistical Analysis to Evaluate Complex Heterogeneous Microstructures in Materials Manufactured Following Powder Metallurgy Processing Routes. , 2022, , 465-470.		1
2	Impact of temperature on chlorine contamination and segregation for Ti(C,N) CVD thin hard coating studied by nano-SIMS and atom probe tomography. Scripta Materialia, 2022, 208, 114321.	5.2	4
3	Contact fatigue of WC-6%wtCo cemented carbides: Influence of corrosion-induced changes on emergence and evolution of damage. Ceramics International, 2022, 48, 5766-5774.	4.8	5
4	Contact fatigue behaviour of CVD coated cemented carbides in dry and wet conditions. Wear, 2022, 492-493, 204215.	3.1	1
5	Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies. Metals, 2022, 12, 234.	2.3	23
6	Influence of microstructural assemblage of the substrate on the adhesion strength of coated PcBN grades. Ceramics International, 2022, 48, 22313-22322.	4.8	7
7	Surface integrity of new dry-electropolishing technology on WC-Co cemented carbides. Procedia CIRP, 2022, 108, 543-548.	1.9	3
8	Assessment of fracture toughness of cemented carbides by using a shallow notch produced by ultrashort pulsed laser ablation, and a comparative study with tests employing precracked specimens. International Journal of Refractory Metals and Hard Materials, 2022, 108, 105949.	3.8	3
9	Assessment of wear micromechanisms on a laser textured cemented carbide tool during abrasive-like machining by FIB/FESEM. Friction, 2021, 9, 656-664.	6.4	1
10	Contact fatigue behavior of α-Al2O3-Ti(C,N) CVD coated WC-Co under dry and wet conditions. Materials Letters, 2021, 284, 129012.	2.6	7
11	Polymer infiltrated ceramic networks with biocompatible adhesive and 3D-printed highly porous scaffolds. Additive Manufacturing, 2021, 39, 101850.	3.0	11
12	Peptidic biofunctionalization of laser patterned dental zirconia: A biochemical-topographical approach. Materials Science and Engineering C, 2021, 125, 112096.	7.3	16
13	Measuring the fracture toughness of single WC grains of cemented carbides by means of microcantilever bending and micropillar splitting. International Journal of Refractory Metals and Hard Materials, 2021, 98, 105529.	3.8	2
14	3D-Printed Polymer-Infiltrated Ceramic Network with Biocompatible Adhesive to Potentiate Dental Implant Applications. Materials, 2021, 14, 5513.	2.9	6
15	Contact damage investigation of CVD carbonitride hard coatings deposited on cemented carbides. International Journal of Refractory Metals and Hard Materials, 2020, 86, 105050.	3.8	19
16	Micromechanical investigations of CVD coated WC-Co cemented carbide by micropillar compression. Materials and Design, 2020, 186, 108283.	7.0	14
17	Surface Patterning of Cemented Carbides by Means of Nanosecond Laser. Materials and Manufacturing Processes, 2020, 35, 123-129.	4.7	15
18	Influence of the processing route on the properties of Ti(C,N)-Fe15Ni cermets. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105046.	3.8	16

#	Article	IF	CITATIONS
19	Evolution of microstructure and residual stresses in gradually ground/polished 3Y-TZP. Journal of the European Ceramic Society, 2020, 40, 1582-1591.	5.7	17
20	Microstructural characterization of cemented carbides by 3D volume reconstruction. Materials Characterization, 2020, 159, 110061.	4.4	7
21	Novel Mechanical Characterization of Austenite and Ferrite Phases within Duplex Stainless Steel. Metals, 2020, 10, 1352.	2.3	24
22	Influence of grinding/polishing on the mechanical, phase stability and cell adhesion properties of yttria-stabilized zirconia. Journal of the European Ceramic Society, 2020, 40, 4304-4314.	5.7	9
23	Performance of laser surface textured cemented carbide tools during abrasive machining: Coating effects, surface integrity assessment and wear characterization. CIRP Journal of Manufacturing Science and Technology, 2020, 31, 130-139.	4.5	11
24	Corrosion-induced changes on Hertzian contact damage in cemented carbides. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105334.	3.8	10
25	Indentation and scratch testing of a WC-6%wtCo cemented carbide: Corrosion effects on load-bearing capability and induced damage. Ceramics International, 2020, 46, 17591-17598.	4.8	8
26	3D FIB/FESEM tomography of grinding-induced damage in WC-Co cemented carbides. Procedia CIRP, 2020, 87, 385-390.	1.9	8
27	Influence of the microstructure on corrosion induced damage of WC-Co cemented carbides. Powder Metallurgy, 2020, 63, 174-179.	1.7	4
28	Influence of the Test Configuration and Temperature on the Mechanical Behaviour of WC-Co. Metals, 2020, 10, 322.	2.3	1
29	Fabrication of Interference Textures on Cemented Carbides Using Nanosecond and Femtosecond Laser Pulses. Procedia CIRP, 2020, 87, 216-221.	1.9	5
30	Laser Surface Texturing of PECM Tools and the Validation. Procedia CIRP, 2020, 95, 891-896.	1.9	3
31	WC-base cemented carbides with partial and total substitution of Co as binder: Evaluation of mechanical response by means of uniaxial compression of micropillars. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105027.	3.8	9
32	Fabrication and tribological performance of a laser-textured hardmetal guiding stone for honing processes. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105034.	3.8	12
33	Assessment of mechanical properties at microstructural length scale of Ti(C,N)–FeNi ceramic-metal composites by means of massive nanoindentation and statistical analysis. Ceramics International, 2019, 45, 20202-20210.	4.8	17
34	Carbon addition effects on microstructure and small-scale hardness for Ti(C,N)-FeNi cermets. International Journal of Refractory Metals and Hard Materials, 2019, 85, 105064.	3.8	12
35	In-Depth Understanding of Fatigue Micromechanisms in Cemented Carbides: Implications for Optimal Microstructural Tailoring. Metals, 2019, 9, 924.	2.3	5
36	Small-scale mechanical properties of constitutive phases within a polycrystalline cubic boron nitride composite. Journal of the European Ceramic Society, 2019, 39, 5181-5189.	5.7	14

#	Article	IF	CITATIONS
37	Assessment of corrosion-induced changes on the mechanical integrity of cemented carbides at small length scales. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105033.	3.8	10
38	Corrosion-Induced Damage and Residual Strength of WC-Co,Ni Cemented Carbides: Influence of Microstructure and Corrosion Medium. Metals, 2019, 9, 1018.	2.3	14
39	Influence of specimen size and microstructure on uniaxial compression of WC-Co micropillars. Ceramics International, 2019, 45, 15934-15941.	4.8	16
40	Surface integrity assessment of laser treated and subsequently coated cemented carbides. International Journal of Refractory Metals and Hard Materials, 2019, 83, 104982.	3.8	10
41	Micromechanical properties of WC-(W,Ti,Ta,Nb)C-Co composites. Journal of Alloys and Compounds, 2019, 777, 593-601.	5.5	30
42	Atom Probe Tomography investigations on grain boundary segregation in polycrystalline Ti(C,N) and Zr(C,N) CVD coatings. Scripta Materialia, 2019, 162, 335-340.	5.2	15
43	Mechanical behavior of PVD coatings deposited on ADI. Revista Materia, 2019, 24, .	0.2	1
44	Implementation of advanced characterisation techniques for assessment of grinding effects on the surface integrity of WC–Co cemented carbides. Powder Metallurgy, 2018, 61, 100-105.	1.7	2
45	Laser surface texturing of a WC-CoNi cemented carbide grade: Surface topography design for honing application. Tribology International, 2018, 122, 236-245.	5.9	20
46	Scale effect in mechanical characterization of WC-Co composites. International Journal of Refractory Metals and Hard Materials, 2018, 72, 157-162.	3.8	19
47	Mapping of mechanical properties at microstructural length scale in WC-Co cemented carbides: Assessment of hardness and elastic modulus by means of high speed massive nanoindentation and statistical analysis. International Journal of Refractory Metals and Hard Materials, 2018, 75, 211-217.	3.8	54
48	Investigations on micro-mechanical properties of polycrystalline Ti(C,N) and Zr(C,N) coatings. Acta Materialia, 2018, 149, 364-376.	7.9	41
49	Strength and reliability of WC-Co cemented carbides: Understanding microstructural effects on the basis of R-curve behavior and fractography. International Journal of Refractory Metals and Hard Materials, 2018, 71, 221-226.	3.8	20
50	Influence of temperature on the biaxial strength of cemented carbides with different microstructures. International Journal of Refractory Metals and Hard Materials, 2018, 71, 82-91.	3.8	8
51	Ablation Investigation of Cemented Carbides Using Short-Pulse Laser Beams. Procedia CIRP, 2018, 68, 172-177.	1.9	17
52	Microstructural and Metallurgical Assessment of the Laser-Patterned Cemented Tungsten Carbide (WC-CoNi). Procedia Manufacturing, 2018, 26, 198-204.	1.9	8
53	Influence of Laser Pulse Number on the Ablation of Cemented Tungsten Carbides (WC-CoNi) with Different Grain Size. Lubricants, 2018, 6, 11.	2.9	11
54	Mechanical strength of ground WC-Co cemented carbides after coating deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 72-77.	5.6	16

#	Article	IF	CITATIONS
55	Focused ion beam tomography of WC-Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 2017, 67, 9-17.	3.8	32
56	3D characterization of cubic boron nitride (CBN) composites used as tool material for high precision abrasive machining processes. Ceramics International, 2017, 43, 14693-14700.	4.8	6
57	Grinding-induced metallurgical alterations in the binder phase of WC-Co cemented carbides. Materials Characterization, 2017, 134, 302-310.	4.4	24
58	Fatigue testing and properties of hardmetals in the gigacycle range. International Journal of Refractory Metals and Hard Materials, 2017, 62, 183-191.	3.8	12
59	Characterization of interfaces between TiCN and iron-base binders. International Journal of Refractory Metals and Hard Materials, 2017, 63, 32-37.	3.8	21
60	Frictional Performance Assessment of Cemented Carbide Surfaces Textured by Laser. IOP Conference Series: Materials Science and Engineering, 2017, 258, 012006.	0.6	7
61	Wear Characterization of Cemented Carbides (WC–CoNi) Processed by Laser Surface Texturing under Abrasive Machining Conditions. Lubricants, 2017, 5, 20.	2.9	10
62	Mechanical properties of Al2O3 inverse opals by means of nanoindentation. Journal Physics D: Applied Physics, 2016, 49, 455303.	2.8	6
63	Influence of the microstructure on the thermal shock behavior of cemented carbides. Ceramics International, 2016, 42, 12701-12708.	4.8	25
64	Thermally Induced Surface Integrity Changes of Ground WC-Co Hardmetals. Procedia CIRP, 2016, 45, 91-94.	1.9	4
65	Small scale fracture behaviour of multilayer TiN/CrN systems: Assessment of bilayer thickness effects by means of ex-situ tests on FIB-milled micro-cantilevers. Surface and Coatings Technology, 2016, 308, 414-417.	4.8	7
66	Hall-Petch strengthening of the constrained metallic binder in WC–Co cemented carbides: Experimental assessment by means of massive nanoindentation and statistical analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 487-491.	5.6	66
67	Microstructural influence on tolerance to corrosion-induced damage in hardmetals. Materials and Design, 2016, 111, 36-43.	7.0	22
68	R-Curve Approach to Describe the Fracture Resistance of Tool Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2739-2754.	2.2	2
69	Tribological Performance of Laser Patterned Cemented Tungsten Carbide Parts. Procedia CIRP, 2016, 42, 439-443.	1.9	30
70	Contact damage and residual strength in polycrystalline diamond (PCD). Diamond and Related Materials, 2016, 65, 131-136.	3.9	18
71	Influence of substrate microstructure and surface finish on cracking and delamination response of TiN-coated cemented carbides. Wear, 2016, 352-353, 102-111.	3.1	9
72	Implementation of an effective time-saving two-stage methodology for microstructural characterization of cemented carbides. International Journal of Refractory Metals and Hard Materials, 2016, 55, 80-86.	3.8	37

Luis Llanes

#	Article	IF	CITATIONS
73	Microstructural effects on the R-curve behavior of WC-Co cemented carbides. Materials and Design, 2016, 97, 492-501.	7.0	35
74	Mechanical deformation of WC–Co composite micropillars under uniaxial compression. International Journal of Refractory Metals and Hard Materials, 2016, 54, 70-74.	3.8	32
75	Surface Topography Quantification of Super Hard Abrasive Tools by Laser Scanning Microscopy. Materials Performance and Characterization, 2016, 5, 796-815.	0.3	7
76	Intrinsic hardness of constitutive phases in WC–Co composites: Nanoindentation testing, statistical analysis, WC crystal orientation effects and flow stress for the constrained metallic binder. Journal of the European Ceramic Society, 2015, 35, 3419-3425.	5.7	68
77	Contact damage resistance of TiN-coated hardmetals: Beneficial effects associated with substrate grinding. Surface and Coatings Technology, 2015, 275, 133-141.	4.8	13
78	A comparative study of the contact fatigue behavior and associated damage micromechanisms of TiN- and WC:H-coated cold-work tool steel. Tribology International, 2015, 88, 263-270.	5.9	21
79	Damage induced by monotonic and cyclic spherical indentation in polycrystalline diamond (PCD). International Journal of Refractory Metals and Hard Materials, 2015, 49, 292-301.	3.8	9
80	Substrate surface finish effects on scratch resistance and failure mechanisms of TiN-coated hardmetals. Surface and Coatings Technology, 2015, 265, 174-184.	4.8	21
81	FIB/FESEM experimental and analytical assessment of R-curve behavior of WC–Co cemented carbides. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 142-149.	5.6	34
82	Fracture toughness of cemented carbides: Testing method and microstructural effects. International Journal of Refractory Metals and Hard Materials, 2015, 49, 153-160.	3.8	65
83	Berkovich nanoindentation and deformation mechanisms in a hardmetal binder-like cobalt alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 621, 128-132.	5.6	23
84	Mechanics and mechanisms of fatigue in a WC–Ni hardmetal and a comparative study with respect to WC–Co hardmetals. International Journal of Fatigue, 2015, 70, 252-257.	5.7	36
85	Influence of temperature and hot corrosion on the micro–nanomechanical behavior of protective mullite EBCs. International Journal of Refractory Metals and Hard Materials, 2015, 49, 383-391.	3.8	11
86	Fracture and fatigue behavior of WC–Co and WC–CoNi cemented carbides. International Journal of Refractory Metals and Hard Materials, 2015, 49, 184-191.	3.8	46
87	Resistance to Contact Deformation and Damage of Hard Ceramics. , 2014, , 367-383.		1
88	Fatigue of Cemented Carbides. , 2014, , 345-362.		4
89	Corrosion damage in WC–Co cemented carbides: residual strength assessment and 3D FIB-FESEM tomography characterisation. Powder Metallurgy, 2014, 57, 324-330.	1.7	23
90	Analysis on the mechanical strength of WC-Co cemented carbides under uniaxial and biaxial bending. Materials & Design, 2014, 55, 851-856.	5.1	31

#	Article	IF	CITATIONS
91	Nanoindentation and nanoscratch properties of mullite-based environmental barrier coatings: Influence of chemical composition — Al/Si ratio. Surface and Coatings Technology, 2014, 239, 49-57.	4.8	21
92	Strengthening zones in the Co matrix of WC–Co cemented carbides. Scripta Materialia, 2014, 83, 17-20.	5.2	98
93	Contact damage and fracture micromechanisms of multilayered TiN/CrN coatings at micro- and nano-length scales. Thin Solid Films, 2014, 571, 308-315.	1.8	42
94	Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading. International Journal of Refractory Metals and Hard Materials, 2014, 45, 179-188.	3.8	44
95	Grinding Effects on Surface Integrity and Mechanical Strength of WC-Co Cemented Carbides. Procedia CIRP, 2014, 13, 257-263.	1.9	61
96	Fatigue performance improvement of electrical discharge machined hardmetals by means of combined thermal annealing and surface modification routes. International Journal of Refractory Metals and Hard Materials, 2013, 36, 60-65.	3.8	13
97	Enhanced Hydrothermal Resistance of Yâ€ <scp>TZP</scp> Ceramics Through Colloidal Processing. Journal of the American Ceramic Society, 2013, 96, 1070-1076.	3.8	17
98	Mechanical response under contact loads of AlCrN-coated tool materials. IOP Conference Series: Materials Science and Engineering, 2013, 48, 012003.	0.6	4
99	Mechanical behavior of 3Al2O3·2SiO2 films under nanoindentation. Acta Materialia, 2012, 60, 5889-5899.	7.9	17
100	Nanoindentation of Al2O3/Al2TiO5 composites: Small-scale mechanical properties of Al2TiO5 as reinforcement phase. Journal of the European Ceramic Society, 2012, 32, 3723-3731.	5.7	21
101	Contact damage and residual strength in hardmetals. International Journal of Refractory Metals and Hard Materials, 2012, 30, 121-127.	3.8	29
102	Influence of substrate microstructure on the contact fatigue strength of coated cold-work tool steels. Surface and Coatings Technology, 2012, 206, 3069-3081.	4.8	33
103	Cross-sectional nanoindentation and nanoscratch of compositionally graded mullite films. Surface and Coatings Technology, 2011, 206, 1927-1931.	4.8	15
104	Fatigue susceptibility under contact loading of hardmetals coated with ceramic films. Procedia Engineering, 2010, 2, 299-308.	1.2	16
105	Microstructural effects on the fatigue crack nucleation in cold work tool steels. Procedia Engineering, 2010, 2, 1777-1785.	1.2	31
106	Contact fatigue behavior of PVD-coated hardmetals. International Journal of Refractory Metals and Hard Materials, 2009, 27, 323-331.	3.8	58
107	Contact Fatigue Behavior of PVD oated Steel. Plasma Processes and Polymers, 2009, 6, S588	3.0	10
108	Loading configuration effects on the strength reliability of alumina–zirconia multilayered ceramics. Composites Science and Technology, 2008, 68, 244-250.	7.8	8

#	Article	IF	CITATIONS
109	Adhesion and abrasive wear resistance of TiN deposited on electrical discharge machined WC–Co cemented carbides. Wear, 2008, 265, 490-496.	3.1	27
110	Influence of notch radius and R-curve behaviour on the fracture toughness evaluation of WC–Co cemented carbides. Engineering Fracture Mechanics, 2008, 75, 4422-4430.	4.3	22
111	Fatigue Behavior of Alumina–Zirconia Multilayered Ceramics. Journal of the American Ceramic Society, 2008, 91, 1618-1625.	3.8	31
112	High-temperature mechanical behaviour of flaw tolerant alumina–zirconia multilayered ceramics. Acta Materialia, 2007, 55, 4891-4901.	7.9	43
113	Threshold strength evaluation on an Al2O3–ZrO2 multilayered system. Journal of the European Ceramic Society, 2007, 27, 1443-1448.	5.7	70
114	Processing optimisation and fracture behaviour of layered ceramic composites with highly compressive layers. Composites Science and Technology, 2007, 67, 1930-1938.	7.8	73
115	Fracture behaviour of an Al ₂ O ₃ –ZrO ₂ multiâ€layered ceramic with residual stresses due to phase transformations*. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 71-78.	3.4	31
116	Residual stresses, strength and toughness of laminates with different layer thickness ratios. Acta Materialia, 2006, 54, 4745-4757.	7.9	119
117	Reply to the paper entitled "Comments on thermal shock resistance of yttria stabilized zirconia with Palmqvist indentation cracks by G. Fargas, D. Casellas, L. Llanes, M. Anglada―by F. Tancret [J. Eur. Ceram. Soc. 23 (2003) 107–114]. Journal of the European Ceramic Society, 2006, 26, 1523-1524.	5.7	1
118	TiN coating on an electrical discharge machined WC-Co hardmetal: surface integrity effects on indentation adhesion response. Journal of Materials Science, 2006, 41, 5213-5219.	3.7	10
119	Cyclic deformation of superduplex stainless steels at intermediate temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 3519-3530.	2.2	5
120	Fracture and fatigue behavior of electrical-discharge machined cemented carbides. International Journal of Refractory Metals and Hard Materials, 2006, 24, 162-167.	3.8	49
121	Tensiones residuales en cerámicas multicapa de Al ₂ O ₃ -ZrO ₂ : naturaleza, evaluación y consecuencias sobre la integridad estructural. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2006, 45, 352-357.	1.9	21
122	Influence of artificial seawater on the cyclic response of superduplex stainless steels. International Journal of Fatigue, 2005, 27, 197-202.	5.7	9
123	Microstructural Coarsening of Zirconia-Toughened Alumina Composites. Journal of the American Ceramic Society, 2005, 88, 1958-1963.	3.8	50
124	Loading mode effects on the fracture toughness and fatigue crack growth resistance of WC–Co cemented carbides. Scripta Materialia, 2005, 52, 1087-1091.	5.2	19
125	Thermal Shock Behavior of an Al ₂ O ₃ /ZrO ₂ Multilayered Ceramic with Residual Stresses due to Phase Transformations. Key Engineering Materials, 2005, 290, 191-198.	0.4	24
126	Fracture and Fatigue Behaviour of Mullite/Molybdenum Composites. Key Engineering Materials, 2005, 290, 110-120.	0.4	4

#	Article	IF	CITATIONS
127	Influence of Temperature and Strain Rate on the Low Cycle Fatigue of Duplex Stainless Steels. High Temperature Materials and Processes, 2005, 24, 125-130.	1.4	2
128	Mechanical strength improvement of electrical discharge machined cemented carbides through PVD (TiN, TiAlN) coatings. Thin Solid Films, 2004, 447-448, 258-263.	1.8	24
129	Dynamic strain ageing effects on superduplex stainless steels at intermediate temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 322-328.	5.6	45
130	Fatigue behavior of powder metallurgy high-speed steels: fatigue limit prediction using a crack growth threshold-based approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 501-504.	5.6	33
131	Surface Integrity Effects on the Fracture Resistance of Electricalâ€Dischargeâ€Machined WC–Co Cemented Carbides. Journal of the American Ceramic Society, 2004, 87, 1687-1693.	3.8	27
132	Efecto de la nitruración en la degradación hidrotérmica de circona tetragonal policristalina estabilizada con Y ₂ O ₃ . Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 47-52.	1.9	5
133	Estimación del lÃmite de fatiga de carburos cementados WC-Co en el marco de la mecÃ;nica de la fractura elÃ;stica lineal. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 273-276.	1.9	1
134	Anisotropy effects on the fatigue behaviour of rolled duplex stainless steels. International Journal of Fatigue, 2003, 25, 481-488.	5.7	45
135	Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects. Journal of Materials Processing Technology, 2003, 143-144, 148-152.	6.3	123
136	Hot deformation of duplex stainless steels. Journal of Materials Processing Technology, 2003, 143-144, 321-325.	6.3	93
137	Thermal shock resistance of yttria-stabilized zirconia with Palmqvist indentation cracks. Journal of the European Ceramic Society, 2003, 23, 107-114.	5.7	29
138	Microstructure, mechanical properties and stability of nitrided Y-TZP. Journal of the European Ceramic Society, 2003, 23, 2955-2962.	5.7	14
139	Evaluation of fatigue damage for duplex stainless steels in aggressive environments by means of an electrochemical fatigue sensor (EFS). International Journal of Fatigue, 2003, 25, 1189-1194.	5.7	12
140	Diamond coatings on electrical-discharge machined hardmetals. Diamond and Related Materials, 2003, 12, 762-767.	3.9	4
141	Influence of Shielding on the Subcritical Crack Propagation in Zirconia Ceramics. Key Engineering Materials, 2002, 206-213, 691-694.	0.4	0
142	Fracture Resistance of Surface-Nitrided Zirconia. Key Engineering Materials, 2002, 206-213, 669-672.	0.4	1
143	Low cycle fatigue behaviour of duplex stainless steels at high temperatures. European Structural Integrity Society, 2002, 29, 15-23.	0.1	1
144	Cyclic Fatigue of Zirconia Ceramics. , 2002, , 255-272.		0

#	Article	IF	CITATIONS
145	On the fatigue crack growth behavior of WC–Co cemented carbides: kinetics description, microstructural effects and fatigue sensitivity. Acta Materialia, 2002, 50, 2381-2393.	7.9	109
146	Effects of grain size and mechanical pretreatment on strain localization in FCC polycrystals. International Journal of Fatigue, 2001, 23, 207-214.	5.7	15
147	Cyclic deformation behaviour of superduplex stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 314, 176-185.	5.6	51
148	High cycle fatigue behaviour of a standard duplex stainless steel plate and bar. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 516-520.	5.6	34
149	On the transformation toughening of Y–ZrO2 ceramics with mixed Y–TZP/PSZ microstructures. Journal of the European Ceramic Society, 2001, 21, 765-777.	5.7	82
150	Fracture variability and R-curve behavior in yttria-stabilized zirconia ceramics. Journal of Materials Science, 2001, 36, 3011-3025.	3.7	36
151	Fracture toughness evaluation of hardmetals: influence of testing procedure. International Journal of Refractory Metals and Hard Materials, 2001, 19, 27-34.	3.8	68
152	Influence of electrical discharge machining on the sliding contact response of cemented carbides. International Journal of Refractory Metals and Hard Materials, 2001, 19, 35-40.	3.8	37
153	Fatigue mechanics of WC–Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 2001, 19, 341-348.	3.8	51
154	Oxidation-induced strength degradation of WC–Co hardmetals. International Journal of Refractory Metals and Hard Materials, 2001, 19, 303-309.	3.8	90
155	Fracture toughness and mechanical strength of Y-TZP/PSZ ceramics. Scripta Materialia, 2001, 45, 213-220.	5.2	57
156	Tempering effects on the tensile response and fatigue life behavior of a sinter-hardened steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 277, 291-296.	5.6	29
157	Effect of testing atmosphere (air/in vacuo) on low cycle fatigue characteristics of a duplex stainless steel. International Journal of Fatigue, 1999, 21, 119-125.	5.7	18
158	Effect of texture and ramp loading on the cyclic response and dislocation substructure of copper polycrystals. International Journal of Fatigue, 1999, 21, 247-253.	5.7	9
159	Fatigue and fracture characteristics of a fine-grained (Mg,Y)–PSZ zirconia ceramic. Journal of the European Ceramic Society, 1999, 19, 1705-1715.	5.7	6
160	Effect of texture and testing conditions on strain localization during cyclic deformation of copper polycrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 270, 349-353.	5.6	5
161	Fracture toughness of zirconia–alumina composites. International Journal of Refractory Metals and Hard Materials, 1999, 17, 11-20.	3.8	66
162	Determinación de la presencia de fatiga mecánica en materiales cerámicos. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 1999, 38, 101-110.	1.9	2

#	Article	IF	CITATIONS
163	Phase assemblage effects on the fracture and fatigue characteristics of magnesia-partially stabilized zirconia. International Journal of Refractory Metals and Hard Materials, 1998, 16, 291-301.	3.8	4
164	Microstructure effects in the X-ray powder diffraction profile of 9mol% Mg-PSZ. Journal of the European Ceramic Society, 1998, 18, 2247-2252.	5.7	6
165	Fracture Resistance of Mullite Under Static and Cyclic Loads. Scripta Materialia, 1997, 38, 39-44.	5.2	9
166	Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel. Journal of Materials Science, 1997, 32, 4533-4540.	3.7	142
167	On the high cycle fatigue behavior of duplex stainless steels: Influence of thermal aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 850-852.	5.6	24
168	Cyclic stress-strain response and dislocation substructure evolution of a ferrite-austenite stainless steel. Acta Materialia, 1996, 44, 1143-1153.	7.9	70
169	Aging effects on the cyclic deformation mechanisms of a duplex stainless steel. Acta Materialia, 1996, 44, 3967-3978.	7.9	54
170	Growth of Small Surface Indentation Cracks in Alumina and Zirconia Toughened Alumina. Key Engineering Materials, 1996, 127-131, 895-902.	0.4	10
171	The Fatigue Behaviour of Mg-PSZ and ZTA Ceramics. , 1996, , 61-76.		5
172	Effect of texture and grain size as independent factors in the cyclic behavior of polycrystalline copper. Scripta Metallurgica Et Materialia, 1995, 32, 1877-1881.	1.0	22
173	Effect of ramp treatment on the cyclic response of coarse-grained copper. Journal of Materials Science Letters, 1994, 13, 148-150.	0.5	1
174	Cyclic response of polycrystalline copper—composite-grain model. Acta Metallurgica Et Materialia, 1994, 42, 1279-1288.	1.8	20
175	Microstructural Effects on the Cyclic Deformation of Polycrystalline FCC Materials. Materials Research Society Symposia Proceedings, 1994, 362, 181.	0.1	1
176	Deformation from twin-boundary stresses and the role of texture: Application to fatigue. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1994, 70, 219-232.	0.6	62
177	"EFFECT OF LOADING MODE ON THE CYCLIC RESPONSE AND THE ASSOCIATED SUBSTRUCTURE OF POLYCRYSTALLINE COPPER IN THE HIGH-CYCLE REGIME". Fatigue and Fracture of Engineering Materials and Structures, 1993, 16, 165-179.	3.4	17
178	Effect of ramp-treatment on the cyclic stress-strain curve of "small grained―copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 167, 37-45.	5.6	10
179	Substructure evolution of copper polycrystals under different testing conditions: conventional strain control and ramp loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 161, 1-12.	5.6	44
180	Effect of grain size and annealing texture on the cyclic response and the substructure evolution of polycrystalline copper. Acta Metallurgica Et Materialia, 1993, 41, 2667-2679.	1.8	54

#	Article	IF	CITATIONS
181	The role of annealing twin boundaries in the cyclic deformation of f.c.c. materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 157, 21-27.	5.6	74
182	Effect of grain size and ramp loading on the low amplitude cyclic stress-strain curve of polycrystalline copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, 128, L1-L4.	5.6	10
183	Fracture of Layered Ceramics. Key Engineering Materials, 0, 409, 94-106.	0.4	10
184	Thermal Shock Behavior of an Al ₂ O ₃ /ZrO ₂ Multilayered Ceramic with Residual Stresses due to Phase Transformations. Key Engineering Materials, 0, , 191-198.	0.4	2