Jibin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685763/publications.pdf

Version: 2024-02-01

18	1,152	14	19
papers	citations	h-index	g-index
19	19	19	1777 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Increased mitochondrial fission drives the reprogramming of fatty acid metabolism in hepatocellular carcinoma cells through suppression of Sirtuin 1. Cancer Communications, 2022, 42, 37-55.	9.2	38
2	TFB2M activates aerobic glycolysis in hepatocellular carcinoma cells through the NAD ⁺ /SIRT3/HIF‶α signaling. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2978-2988.	2.8	8
3	SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Cancer Letters, 2020, 469, 89-101.	7.2	99
4	Upregulation of histamine receptor H1 promotes tumor progression and contributes to poor prognosis in hepatocellular carcinoma. Oncogene, 2020, 39, 1724-1738.	5.9	30
5	Circadian clock gene NPAS2 promotes reprogramming of glucose metabolism in hepatocellular carcinoma cells. Cancer Letters, 2020, 469, 498-509.	7.2	50
6	Overâ€expression of TFB2M facilitates cell growth and metastasis via activating ROSâ€Aktâ€NFâ€₽B signalling in hepatocellular carcinoma. Liver International, 2020, 40, 1756-1769.	3.9	11
7	SIK2 enhances synthesis of fatty acid and cholesterol in ovarian cancer cells and tumor growth through PI3K/Akt signaling pathway. Cell Death and Disease, 2020, 11, 25.	6.3	60
8	SDHC-related deficiency of SDH complex activity promotes growth and metastasis of hepatocellular carcinoma via ROS/NFÎB signaling. Cancer Letters, 2019, 461, 44-55.	7.2	36
9	Upregulated histamine receptor�H3 promotes tumor growth and metastasis in hepatocellular carcinoma. Oncology Reports, 2019, 41, 3347-3354.	2.6	12
10	MCUR1-Mediated Mitochondrial Calcium Signaling Facilitates Cell Survival of Hepatocellular Carcinoma <i>via</i> Reactive Oxygen Species-Dependent P53 Degradation. Antioxidants and Redox Signaling, 2018, 28, 1120-1136.	5.4	53
11	Mitochondrial fission promotes cell migration by Ca ²⁺ /CaMKII/ERK/FAK pathway in hepatocellular carcinoma. Liver International, 2018, 38, 1263-1272.	3.9	63
12	Mitochondrial fission forms a positive feedback loop with cytosolic calcium signaling pathway to promote autophagy in hepatocellular carcinoma cells. Cancer Letters, 2017, 403, 108-118.	7.2	55
13	NPAS2 promotes cell survival of hepatocellular carcinoma by transactivating CDC25A. Cell Death and Disease, 2017, 8, e2704-e2704.	6.3	49
14	Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy, 2016, 12, 999-1014.	9.1	269
15	High leukocyte mtDNA content contributes to poor prognosis through ROS-mediated immunosuppression in hepatocellular carcinoma patients. Oncotarget, 2016, 7, 22834-22845.	1.8	19
16	Genetic variants in de novo lipogenic pathway genes predict the prognosis of surgically-treated hepatocellular carcinoma. Scientific Reports, 2015, 5, 9536.	3.3	8
17	CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways. Journal of Hepatology, 2015, 63, 1378-1389.	3.7	166
18	CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. Journal of Hepatology, 2014, 61, 859-866.	3.7	124