## John Eberth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685730/publications.pdf Version: 2024-02-01



IOHN FREDTH

| #  | Article                                                                                                                                                                                                                                    | IF        | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 1  | Reduced Smooth Muscle Contractile Capacity Facilitates Maladaptive Arterial Remodeling. Journal of<br>Biomechanical Engineering, 2022, 144, .                                                                                              | 0.6       | 3             |
| 2  | Evaluation of the Stress–Growth Hypothesis in Saphenous Vein Perfusion Culture. Annals of<br>Biomedical Engineering, 2021, 49, 487-501.                                                                                                    | 1.3       | 6             |
| 3  | The Association Between Curvature and Rupture in a Murine Model of Abdominal Aortic Aneurysm and Dissection. Experimental Mechanics, 2021, 61, 203-216.                                                                                    | 1.1       | 4             |
| 4  | Myocardial TGFβ2 Is Required for Atrioventricular Cushion Remodeling and Myocardial Development.<br>Journal of Cardiovascular Development and Disease, 2021, 8, 26.                                                                        | 0.8       | 2             |
| 5  | Longitudinal histomechanical heterogeneity of the internal thoracic artery. Journal of the<br>Mechanical Behavior of Biomedical Materials, 2021, 116, 104314.                                                                              | 1.5       | 4             |
| 6  | Systemic delivery of targeted nanotherapeutic reverses angiotensin II-induced abdominal aortic aneurysms in mice. Scientific Reports, 2021, 11, 8584.                                                                                      | 1.6       | 13            |
| 7  | Mechanics of ascending aortas from TGFβ-1, -2, -3 haploinsufficient mice and elastase-induced aortopathy. Journal of Biomechanics, 2021, 125, 110543.                                                                                      | 0.9       | 2             |
| 8  | Diet alters age-related remodeling of aortic collagen in mice susceptible to atherosclerosis. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H52-H65.                                                    | 1.5       | 5             |
| 9  | Smallâ€diameter artery decellularization: Effects of anionic detergent concentration and treatment<br>duration on porcine internal thoracic arteries. Journal of Biomedical Materials Research - Part B<br>Applied Biomaterials, 2021, , . | 1.6       | 4             |
| 10 | Brief communication: Maximum ingested bite size in captive western lowland gorillas ( Gorilla gorilla) Tj ETQq0 0                                                                                                                          | 0 rgBT /O | verlock 10 Tf |
| 11 | Transforming Growth Factor Beta3 is Required for Cardiovascular Development. Journal of<br>Cardiovascular Development and Disease, 2020, 7, 19.                                                                                            | 0.8       | 21            |
| 12 | Null strain analysis of submerged aneurysm analogues using a novel 3D stereomicroscopy device.<br>Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 332-344.                                                          | 0.9       | 7             |
| 13 | Targeted Gold Nanoparticles as an Indicator of Mechanical Damage in an Elastase Model of Aortic<br>Aneurysm. Annals of Biomedical Engineering, 2020, 48, 2268-2278.                                                                        | 1.3       | 11            |
| 14 | Gold nanoparticles that target degraded elastin improve imaging and rupture prediction in an Angll mediated mouse model of abdominal aortic aneurysm. Theranostics, 2019, 9, 4156-4167.                                                    | 4.6       | 20            |
| 15 | Geometric determinants of local hemodynamics in severe carotid artery stenosis. Computers in<br>Biology and Medicine, 2019, 114, 103436.                                                                                                   | 3.9       | 23            |
| 16 | Constitutive modeling of compressible type-I collagen hydrogels. Medical Engineering and Physics, 2018, 53, 39-48.                                                                                                                         | 0.8       | 18            |
| 17 | Contractile Smooth Muscle and Active Stress Generation in Porcine Common Carotids. Journal of<br>Biomechanical Engineering, 2018, 140, .                                                                                                   | 0.6       | 13            |

18Removing vessel constriction on the embryonic heart results in changes in valve gene expression,<br/>morphology, and hemodynamics. Developmental Dynamics, 2018, 247, 531-541.0.810

John Eberth

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pulsatile Perfusion Bioreactor for Biomimetic Vascular Impedances. Journal of Medical Devices,<br>Transactions of the ASME, 2018, 12, .                                                     | 0.4 | 6         |
| 20 | Perfusion Tissue Culture Initiates Differential Remodeling of Internal Thoracic Arteries, Radial<br>Arteries, and Saphenous Veins. Journal of Vascular Research, 2018, 55, 255-267.         | 0.6 | 5         |
| 21 | Comparative mechanics of diverse mammalian carotid arteries. PLoS ONE, 2018, 13, e0202123.                                                                                                  | 1.1 | 23        |
| 22 | Mechanical and geometrical determinants of wall stress in abdominal aortic aneurysms: A computational study. PLoS ONE, 2018, 13, e0192032.                                                  | 1.1 | 25        |
| 23 | Design and Fabrication of a Three-Dimensional In Vitro System for Modeling Vascular Stenosis.<br>Microscopy and Microanalysis, 2017, 23, 859-871.                                           | 0.2 | 5         |
| 24 | Molecular Consequences of Cardiac Valve Development as a Result of Altered Hemodynamics.<br>Microscopy and Microanalysis, 2017, 23, 1330-1331.                                              | 0.2 | 0         |
| 25 | Therapeutic Engineered Hydrogels Postpone Capsule Formation at the Host-Implant Interface.<br>Microscopy and Microanalysis, 2017, 23, 1306-1307.                                            | 0.2 | Ο         |
| 26 | The Use of a Degradable Biomaterial to Regulate Fibrosis at the Implant-Host Interface. Microscopy and Microanalysis, 2016, 22, 1052-1053.                                                  | 0.2 | 1         |
| 27 | Pathological Consequences of Altered Hemodynamics During Heart Valve Development. Microscopy and Microanalysis, 2016, 22, 1062-1063.                                                        | 0.2 | Ο         |
| 28 | Design and Fabrication of a Three-Dimensional In Vitro Model of Vascular Stenosis. Microscopy and Microanalysis, 2016, 22, 1766-1767.                                                       | 0.2 | 1         |
| 29 | Comparison of Aortic Collagen Fiber Angle Distribution in Mouse Models of Atherosclerosis Using Second-Harmonic Generation (SHG) Microscopy. Microscopy and Microanalysis, 2016, 22, 55-62. | 0.2 | 16        |
| 30 | The perivascular environment along the vertebral artery governs segment-specific structural and mechanical properties. Acta Biomaterialia, 2016, 45, 286-295.                               | 4.1 | 11        |
| 31 | A Novel <em>Ex Ovo</em> Banding Technique to Alter Intracardiac Hemodynamics in an<br>Embryonic Chicken System. Journal of Visualized Experiments, 2016, , .                                | 0.2 | 2         |
| 32 | A mechanical argument for the differential performance of coronary artery grafts. Journal of the<br>Mechanical Behavior of Biomedical Materials, 2016, 54, 93-105.                          | 1.5 | 37        |
| 33 | Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development. Journal of Cardiovascular Development and Disease, 2015, 2, 108-124.                                         | 0.8 | 48        |
| 34 | Biofabrication of Dynamic, 3-Dimensional, In vitro Models of Disease. Microscopy and Microanalysis, 2015, 21, 619-620.                                                                      | 0.2 | 2         |
| 35 | Dietâ€induced Vascular Remodeling Produces a Shift in Collagen Fiber Angle Distribution in a Mouse<br>Model of Atherosclerosis. FASEB Journal, 2015, 29, 719.9.                             | 0.2 | 0         |
| 36 | The impact of flow-induced forces on the morphogenesis of the outflow tract. Frontiers in Physiology, 2014, 5, 225.                                                                         | 1.3 | 33        |

John Eberth

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Chitosan and chitosan composites reinforced with carbon nanostructures. Journal of Alloys and Compounds, 2014, 615, S515-S521.                                                            | 2.8 | 7         |
| 38 | Consistent Biomechanical Phenotyping of Common Carotid Arteries from Seven Genetic,<br>Pharmacological, and Surgical Mouse Models. Annals of Biomedical Engineering, 2014, 42, 1207-1223. | 1.3 | 43        |
| 39 | Sintering of Chitosan and Chitosan Composites. , 2012, , .                                                                                                                                |     | 3         |
| 40 | Acute mechanical effects of elastase on the infrarenal mouse aorta: Implications for models of aneurysms. Journal of Biomechanics, 2012, 45, 660-665.                                     | 0.9 | 38        |
| 41 | Evaluation of heat propagation through poultry in a reduced computationalâ€cost model of contact cooking. International Journal of Food Science and Technology, 2012, 47, 1130-1137.      | 1.3 | 5         |
| 42 | Constitutive function, residual stress, and state of uniform stress in arteries. Journal of the Mechanics and Physics of Solids, 2012, 60, 1145-1157.                                     | 2.3 | 8         |
| 43 | Evolving biaxial mechanical properties of mouse carotid arteries in hypertension. Journal of<br>Biomechanics, 2011, 44, 2532-2537.                                                        | 0.9 | 28        |
| 44 | On optimal defibrillating pulse synthesis. , 2011, , .                                                                                                                                    |     | 2         |
| 45 | Advanced Engine Cooling – Components, Testing and Observations. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2010, 43, 294-299.                        | 0.4 | 9         |
| 46 | Time course of carotid artery growth and remodeling in response to altered pulsatility. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1875-H1883.     | 1.5 | 44        |
| 47 | Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Mathematical Medicine and Biology, 2010, 27, 343-371.                            | 0.8 | 23        |
| 48 | Origin of axial prestretch and residual stress in arteries. Biomechanics and Modeling in Mechanobiology, 2009, 8, 431-446.                                                                | 1.4 | 162       |
| 49 | Mechanics of Carotid Arteries in a Mouse Model of Marfan Syndrome. Annals of Biomedical<br>Engineering, 2009, 37, 1093-1104.                                                              | 1.3 | 76        |
| 50 | Fundamental role of axial stress in compensatory adaptations by arteries. Journal of Biomechanics, 2009, 42, 1-8.                                                                         | 0.9 | 235       |
| 51 | Multichannel Pulsed Doppler Signal Processing for Vascular Measurements in Mice. Ultrasound in<br>Medicine and Biology, 2009, 35, 2042-2054.                                              | 0.7 | 24        |
| 52 | Importance of pulsatility in hypertensive carotid artery growth and remodeling. Journal of<br>Hypertension, 2009, 27, 2010-2021.                                                          | 0.3 | 74        |
| 53 | Integration of Heat Conduction Measurement Systems Into Engineering Technology Education. , 2005, ,                                                                                       |     | 0         |
| 54 | Modeling and Validation of Automotive "Smart―Thermal Management System Architectures. , 0, , .                                                                                            |     | 23        |