Nora P Rotstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685522/publications.pdf

Version: 2024-02-01

471509 552781 1,590 36 17 26 citations h-index g-index papers 37 37 37 1652 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Damaging effects of BMAA on retina neurons and MÃ $\frac{1}{4}$ ller glial cells. Experimental Eye Research, 2021, 202, 108342.	2.6	7
2	Ceramide-1-phosphate promotes the migration of retina MÃ 1 /4ller glial cells. Experimental Eye Research, 2021, 202, 108359.	2.6	9
3	Sphingolipids as critical players in retinal physiology and pathology. Journal of Lipid Research, 2021, 62, 100037.	4.2	39
4	Pigment epitheliumâ€derived factor (PEDF) and derived peptides promote survival and differentiation of photoreceptors and induce neuriteâ€outgrowth in amacrine neurons. Journal of Neurochemistry, 2021, 159, 840-856.	3.9	13
5	Retinoid X receptor activation promotes photoreceptor survival and modulates the inflammatory response in a mouse model of retinitis pigmentosa. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119098.	4.1	7
6	Retina stem cells, hopes and obstacles. World Journal of Stem Cells, 2021, 13, 1446-1479.	2.8	6
7	A Defective Crosstalk Between Neurons and MÃ $\frac{1}{4}$ ller Glial Cells in the rd1 Retina Impairs the Regenerative Potential of Glial Stem Cells. Frontiers in Cellular Neuroscience, 2019, 13, 334.	3.7	6
8	Sphingolipids as Emerging Mediators in Retina Degeneration. Frontiers in Cellular Neuroscience, 2019, 13, 246.	3.7	54
9	Ceramide Induces the Death of Retina Photoreceptors Through Activation of Parthanatos. Molecular Neurobiology, 2019, 56, 4760-4777.	4.0	30
10	Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress. Journal of Neurochemistry, 2016, 136, 931-946.	3.9	31
11	Protective effects of retinoid x receptors on retina pigment epithelium cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1134-1145.	4.1	13
12	Sphingosine-1-Phosphate Is a Crucial Signal for Migration of Retina Müller Glial Cells. , 2015, 56, 5808.		29
13	Light, lipids and photoreceptor survival: live or let die?. Photochemical and Photobiological Sciences, 2015, 14, 1737-1753.	2.9	23
14	Retinoic Acid Promotes Apoptosis and Differentiation in Photoreceptors by Activating the P38 MAP Kinase Pathway., 2013, 54, 3143.		19
15	Retinoid X receptor activation is essential for docosahexaenoic acid protection of retina photoreceptors. Journal of Lipid Research, 2013, 54, 2236-2246.	4.2	37
16	$M\tilde{A}\frac{1}{4}$ ller glial cells induce stem cell properties in retinal progenitors in vitro and promote their further differentiation into photoreceptors. Journal of Neuroscience Research, 2012, 90, 407-421.	2.9	15
17	Ceramide-1-Phosphate, a New Mediator of Development and Survival in Retina Photoreceptors. , 2011, 52, 6580.		32
18	Synthesis of Sphingosine Is Essential for Oxidative Stress-Induced Apoptosis of Photoreceptors. , 2010, 51, 1171.		44

#	Article	IF	CITATIONS
19	Regulating survival and development in the retina: key roles for simple sphingolipids. Journal of Lipid Research, 2010, 51, 1247-1262.	4.2	71
20	Sphingosine-1-Phosphate Is a Key Regulator of Proliferation and Differentiation in Retina Photoreceptors., 2009, 50, 4416.		40
21	Oxidative stress promotes proliferation and dedifferentiation of retina glial cells in vitro. Journal of Neuroscience Research, 2009, 87, 964-977.	2.9	52
22	Insulin receptor signaling regulates actin cytoskeletal organization in developing photoreceptors. Journal of Neurochemistry, 2009, 110, 1648-1660.	3.9	6
23	Trophic factors and neuronal interactions regulate the cell cycle and Pax6 expression in MÃ $\frac{1}{4}$ ller stem cells. Journal of Neuroscience Research, 2008, 86, 1459-1471.	2.9	27
24	Retinal pigment epithelial cells promote spatial reorganization and differentiation of retina photoreceptors. Journal of Neuroscience Research, 2008, 86, 3503-3514.	2.9	35
25	Lutein and Zeaxanthin Protect Photoreceptors from Apoptosis Induced by Oxidative Stress: Relation with Docosahexaenoic Acid., 2007, 48, 5168.		154
26	Docosahexaenoic Acid Promotes Photoreceptor Differentiation without Altering Crx Expression., 2006, 47, 3017.		44
27	Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. Journal of Neurochemistry, 2006, 98, 1507-1520.	3.9	97
28	Ceramide is a Mediator of Apoptosis in Retina Photoreceptors. , 2006, 47, 1658.		71
29	Cell Cycle Regulation in Retinal Progenitors by Glia-Derived Neurotrophic Factor and Docosahexaenoic Acid., 2003, 44, 2235.		47
30	Protective Effect of Docosahexaenoic Acid on Oxidative Stress-Induced Apoptosis of Retina Photoreceptors., 2003, 44, 2252.		152
31	Effects of docosahexaenoic acid on retinal development: Cellular and molecular aspects. Lipids, 2001, 36, 927-935.	1.7	70
32	Insulin-like growth factor-l is a potential trophic factor for amacrine cells. Journal of Neurochemistry, 2001, 76, 1199-1211.	3.9	53
33	Apoptosis of Retinal Photoreceptors During Development In Vitro: Protective Effect of Docosahexaenoic Acid. Journal of Neurochemistry, 1997, 69, 504-513.	3.9	110
34	Docosahexaenoic Acid Is Required for the Survival of Rat Retinal Photoreceptors In Vitro. Journal of Neurochemistry, 1996, 66, 1851-1859.	3.9	99
35	Labeling of lipids of retina subcellular fractions by [1-14C]eicosatetraenoate (20:4(n â^' 6)) docosapentaenoate (22:5(n â^' 3)) and docosahexaenoate (22:6(n â^' 3)). Lipids and Lipid Metabolism, 1987, 921, 221-234.	2.6	26
36	1987, 921, 235-244.	2.6	21