List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685390/publications.pdf Version: 2024-02-01

Ι ΕΝΙΑ ΕΚΟΤΟΔΩΜ

#	Article	IF	CITATIONS
1	Plasma concentrations of methylphenidate enantiomers in adults with ADHD and substance use disorder, with focus on high doses and relationship to carboxylesterase activity. Basic and Clinical Pharmacology and Toxicology, 2022, 130, 492-500.	2.5	2
2	Optimizing detection of erythropoietin receptor agonists from dried blood spots for antiâ€doping application. Drug Testing and Analysis, 2022, 14, 1377-1386.	2.6	15
3	Studies of IGF-I and Klotho Protein in Relation to Anabolic-Androgenic Steroid and Growth Hormone Administrations. Frontiers in Sports and Active Living, 2022, 4, 829940.	1.8	1
4	Effect of UGT1A4, UGT2B7, UGT2B15, UGT2B17 and ABC1B polymorphisms on lamotrigine metabolism in Danish patients. Epilepsy Research, 2022, 182, 106897.	1.6	5
5	Klotho Polymorphism in Association With Serum Testosterone and Knee Strength in Women After Testosterone Administration. Frontiers in Physiology, 2022, 13, .	2.8	4
6	Urinary steroid profile in relation to the menstrual cycle. Drug Testing and Analysis, 2021, 13, 550-557.	2.6	25
7	Disposition of Urinary and Serum Steroid Metabolites in Response to Testosterone Administration in Healthy Women. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 697-707.	3.6	23
8	Variations in biomarkers of dyslipidemia and dysbiosis during the menstrual cycle: a pilot study in healthy volunteers. BMC Women's Health, 2021, 21, 166.	2.0	6
9	Reâ€evaluation of combined ((ES/EG)/(TS/TG)) ratio as a marker of testosterone intake in men. Drug Testing and Analysis, 2021, 13, 1576-1579.	2.6	7
10	Urinary Steroid Profile in Elite Female Athletes in Relation to Serum Androgens and in Comparison With Untrained Controls. Frontiers in Physiology, 2021, 12, 702305.	2.8	9
11	Men´s experiences of using anabolic androgenic steroids. International Journal of Qualitative Studies on Health and Well-being, 2021, 16, 1927490.	1.6	8
12	Studies on CYP3A activity during the menstrual cycle as measured by urinary 6βâ€hydroxycortisol/cortisol. Pharmacology Research and Perspectives, 2021, 9, e00884.	2.4	1
13	Women's Experiences of Using Anabolic Androgenic Steroids. Frontiers in Sports and Active Living, 2021, 3, 656413.	1.8	7
14	A Summary of Online Enquiries Submitted to Anti-doping Hotline 2005–2018. Frontiers in Reproductive Health, 2021, 3, .	1.9	4
15	Studies of athlete biological passport biomarkers and clinical parameters in male and female users of anabolic androgenic steroids and other doping agents. Drug Testing and Analysis, 2020, 12, 514-523.	2.6	29
16	The intraâ€individual stability of GH biomarkers IGFâ€i and Pâ€iIIâ€NP in relation to GHRH administration, menstrual cycle, and hematological parameters. Drug Testing and Analysis, 2020, 12, 1620-1628.	2.6	6
17	Digit Ratio (2D:4D) and Physical Performance in Female Olympic Athletes. Frontiers in Endocrinology, 2020, 11, 292.	3.5	18
18	Male Anabolic Androgenic Steroid Users with Personality Disorders Report More Aggressive Feelings, Suicidal Thoughts, and Criminality. Medicina (Lithuania), 2020, 56, 265.	2.0	14

#	Article	IF	CITATIONS
19	Fluctuations in hematological athlete biological passport biomarkers in relation to the menstrual cycle. Drug Testing and Analysis, 2020, 12, 1229-1240.	2.6	22
20	Longitudinal studies of putative growth hormone (GH) biomarkers and hematological and steroidal parameters in relation to 2 weeks administration of human recombinant GH. Drug Testing and Analysis, 2020, 12, 711-719.	2.6	8
21	Interâ€individual variation of the urinary steroid profiles in Swedish and Norwegian athletes. Drug Testing and Analysis, 2020, 12, 720-730.	2.6	13
22	Impact of hormonal contraceptives on urinary steroid profile in relation to serum hormone changes and CYP17A1 polymorphism. Drug Testing and Analysis, 2019, 11, 1284-1289.	2.6	13
23	Longitudinally monitoring of Pâ€IIIâ€NP, IGFâ€I, and GHâ€2000 score increases the probability of detecting two weeks' administration of lowâ€dose recombinant growth hormone compared to GHâ€2000 decision limit and GH isoform test and micro RNA markers. Drug Testing and Analysis, 2019, 11, 411-421.	2.6	20
24	Impact of vitamin D and vitamin D receptor Taql polymorphism in primary human myoblasts. Endocrine Connections, 2019, 8, 1070-1081.	1.9	1
25	UGT polymorphisms and lamotrigine clearance during pregnancy. Epilepsy Research, 2018, 140, 199-208.	1.6	29
26	Pregnancy greatly affects the steroidal module of the Athlete Biological Passport. Drug Testing and Analysis, 2018, 10, 1070-1075.	2.6	12
27	Codeine influences the serum and urinary profile of endogenous androgens but does not interact with the excretion rate of administered testosterone. Drug Testing and Analysis, 2018, 10, 723-730.	2.6	8
28	Sensitivity of doping biomarkers after administration of a single dose testosterone gel. Drug Testing and Analysis, 2018, 10, 839-848.	2.6	35
29	Pregnancy-Induced Perturbation of Urinary Androgenic Steroid Disposition. Journal of the Endocrine Society, 2018, 2, 597-608.	0.2	2
30	Vitamin D binding protein is not affected by high-dose vitamin D supplementation: a post hoc analysis of a randomised, placebo-controlled study. BMC Research Notes, 2018, 11, 619.	1.4	18
31	Vitamin D receptor rs2228570 polymorphism is associated with LH levels in men exposed to anabolic androgenic steroids. BMC Research Notes, 2018, 11, 51.	1.4	4
32	Serum androgen profile and physical performance in women Olympic athletes. British Journal of Sports Medicine, 2017, 51, 1301-1308.	6.7	57
33	Urinary steroid profile in females – the impact of menstrual cycle and emergency contraceptives. Drug Testing and Analysis, 2017, 9, 1034-1042.	2.6	42
34	Discordant genotyping results using DNA isolated from antiâ€doping control urine samples. Drug Testing and Analysis, 2017, 9, 994-1000.	2.6	7
35	Recruitment to doping and help-seeking behavior of eight female AAS users. Substance Abuse Treatment, Prevention, and Policy, 2016, 11, 11.	2.2	38
36	Genetic Expression Profile of Vitamin D Metabolizing Enzymes in the First Trimester. Hormone and Metabolic Research, 2016, 48, 834-839.	1.5	8

#	Article	IF	CITATIONS
37	Impact of single-dose nandrolone decanoate on gonadotropins, blood lipids and HMG CoA reductase in healthy men. Andrologia, 2016, 48, 595-600.	2.1	8
38	Low Vitamin D Levels and Genetic Polymorphism in the Vitamin D Receptor are Associated with Increased Risk of Statinâ€Induced Myopathy. Basic and Clinical Pharmacology and Toxicology, 2016, 118, 214-218.	2.5	27
39	Atypical excretion profile and GC/C/IRMS findings may last for nine months after a single dose of nandrolone decanoate. Steroids, 2016, 108, 105-111.	1.8	8
40	Vitamin D status in Wellâ€Controlled Caucasian HIV Patients in Relation to Inflammatory and Metabolic Markers – A Crossâ€Sectional Cohort Study in Sweden. Scandinavian Journal of Immunology, 2015, 82, 55-62.	2.7	9
41	Expression of <scp>CYP</scp> 3A4 and <scp>CYP</scp> 3A7 in Human Foetal Tissues and its Correlation with Nuclear Receptors. Basic and Clinical Pharmacology and Toxicology, 2015, 117, 261-266.	2.5	29
42	Doseâ€dependent testosterone sensitivity of the steroidal passport and GCâ€Câ€IRMS analysis in relation to the UGT2B17 deletion polymorphism. Drug Testing and Analysis, 2015, 7, 1063-1070.	2.6	46
43	mi <scp>RNA</scp> â€⊋7b levels are associated with <scp>CYP</scp> 3A activity inÂvitro and inÂvivo. Pharmacology Research and Perspectives, 2015, 3, e00192.	2.4	23
44	Genetic variation, expression and ontogeny of sulfotransferase SULT2A1 in humans. Pharmacogenomics Journal, 2015, 15, 293-297.	2.0	17
45	Perturbation of the Hematopoietic Profile by Anabolic Androgenic Steroids. Journal of Hormones, 2014, 2014, 1-7.	0.2	11
46	CYP2C8 and CYP2C9 mRNA expression profile in the human fetus. Frontiers in Genetics, 2014, 5, 58.	2.3	13
47	Effects of different doses of testosterone on gonadotropins, 25-hydroxyvitamin D3, and blood lipids in healthy men. Substance Abuse and Rehabilitation, 2014, 5, 121.	4.8	19
48	The Impact of Genetics and Hormonal Contraceptives on the Steroid Profile in Female Athletes. Frontiers in Endocrinology, 2014, 5, 50.	3.5	24
49	PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2. Frontiers in Pharmacology, 2014, 5, 132.	3.5	5
50	Prenatal expression of thioredoxin reductase 1 (TRXR1) and microsomal glutathione transferase 1 (MGST1) in humans. FEBS Open Bio, 2014, 4, 886-891.	2.3	17
51	Detection of morphineâ€3â€sulfate and morphineâ€6â€sulfate in human urine and plasma, and formation in liver cytosol. Pharmacology Research and Perspectives, 2014, 2, e00071.	2.4	13
52	A supraphysiological dose of testosterone induces nitric oxide production and oxidative stress. European Journal of Preventive Cardiology, 2014, 21, 1049-1054.	1.8	47
53	Simvastatin inhibits the core promoter of the TXNRD1 gene and lowers cellular TrxR activity in HepG2 cells. Biochemical and Biophysical Research Communications, 2013, 430, 90-94.	2.1	7
54	Testosterone challenge and androgen receptor activity in relation to <scp>UGT</scp> 2B17 genotypes. European Journal of Clinical Investigation, 2013, 43, 248-255.	3.4	16

#	Article	IF	CITATIONS
55	Non-Steroidal Anti-Inflammatory Drugs Do Not Influence the Urinary Testosterone/Epitestosterone Glucuronide Ratio. Frontiers in Endocrinology, 2013, 4, 51.	3.5	9
56	Implication of Human UGT2B7, 2B15, and 2B17 in 19-Norandrosterone Metabolism. Frontiers in Endocrinology, 2013, 4, 75.	3.5	12
57	SULT2A1 Gene Copy Number Variation is Associated with Urinary Excretion Rate of Steroid Sulfates. Frontiers in Endocrinology, 2013, 4, 88.	3.5	13
58	Expression of UGT2B7 is driven by two mutually exclusive promoters and alternative splicing in human tissues. Pharmacogenetics and Genomics, 2013, 23, 684-696.	1.5	10
59	Tissue Distribution and Relative Gene Expression of UDP-Glucuronosyltransferases (2B7, 2B15, 2B17) in the Human Fetus. Drug Metabolism and Disposition, 2013, 41, 291-295.	3.3	27
60	Statins inhibit expression of Thioredoxin reductase 1 in rat and human liver and reduce tumour development. Biochemical and Biophysical Research Communications, 2012, 417, 1046-1051.	2.1	22
61	Single dose testosterone increases total cholesterol levels and induces the expression of HMG CoA Reductase. Substance Abuse Treatment, Prevention, and Policy, 2012, 7, 12.	2.2	26
62	Basal and Regulatory Promoter Studies of the AKR1C3 Gene in Relation to Prostate Cancer. Frontiers in Pharmacology, 2012, 3, 151.	3.5	14
63	Androgens and doping tests: genetic variation and pitâ€falls. British Journal of Clinical Pharmacology, 2012, 74, 3-15.	2.4	34
64	Doping and Genetic Testing: Sex Difference in UGT2B15 Expression, Testosterone Glucuronidation Activity and Urinary Testosterone/ Epitestosterone Glucuronide Ratio. Current Pharmacogenomics and Personalized Medicine, 2012, 10, 125-131.	0.2	8
65	Long term perturbation of endocrine parameters and cholesterol metabolism after discontinued abuse of anabolic androgenic steroids. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 295-300.	2.5	48
66	Bioavailability of testosterone enanthate dependent on genetic variation in the phosphodiesterase 7B but not on the uridine 5′-diphospho-glucuronosyltransferase (UGT2B17) gene Pharmacogenetics and Genomics, 2011, 21, 325-332.	1.5	24
67	Correlation between circulatory, local prostatic, and intraâ€prostatic androgen levels. Prostate, 2011, 71, 909-914.	2.3	28
68	Androgen Sulfation in Healthy UDP-Glucuronosyl Transferase 2B17 Enzyme-Deficient Men. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3440-3447.	3.6	34
69	Radical prostatectomy: Influence on serum and urinary androgen levels. Prostate, 2010, 70, 200-205.	2.3	37
70	Genetic variation in androgen disposition: implications in clinical medicine including testosterone abuse. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 731-744.	3.3	13
71	Substantial advantage of a combined Bayesian and genotyping approach in testosterone doping tests. Steroids, 2009, 74, 365-368.	1.8	38
72	Non-steroidal anti-inflammatory drugs interact with testosterone glucuronidation. Steroids, 2009, 74, 971-977.	1.8	36

#	Article	IF	CITATIONS
73	The <i>UGT2B17</i> gene deletion is not associated with prostate cancer risk. Prostate, 2008, 68, 571-575.	2.3	38
74	Doping Test Results Dependent on Genotype of Uridine Diphospho-Glucuronosyl Transferase 2B17, the Major Enzyme for Testosterone Glucuronidation. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2500-2506.	3.6	163
75	Deletion polymorphism of the UGT2B17 gene is associated with increased risk for prostate cancer and correlated to gene expression in the prostate. Pharmacogenomics Journal, 2008, 8, 147-151.	2.0	62
76	Genetic aspects of epitestosterone formation and androgen disposition: influence of polymorphisms in CYP17 and UGT2B enzymes. Pharmacogenetics and Genomics, 2008, 18, 477-485.	1.5	49
77	Regulation and expression of human CYP7B1 in prostate: Overexpression of CYP7B1 during progression of prostatic adenocarcinoma. Prostate, 2007, 67, 1439-1446.	2.3	41
78	Large Differences in Testosterone Excretion in Korean and Swedish Men Are Strongly Associated with a UDP-Glucuronosyl Transferase 2B17 Polymorphism. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 687-693.	3.6	258
79	A functional C–G polymorphism in the CYP7B1 promoter region and its different distribution in Orientals and Caucasians. Pharmacogenomics Journal, 2004, 4, 245-250.	2.0	18