
Irina Dudanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Architecture and Cellular Interactions of PolyQ Inclusions. Cell, 2017, 171, 179-187.e10.	13.5	271
2	Early Defects of GABAergic Synapses in the Brain Stem of a MeCP2 Mouse Model of Rett Syndrome. Journal of Neurophysiology, 2008, 99, 112-121.	0.9	202
3	Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function. Cell Reports, 2017, 21, 2291-2303.	2.9	107
4	Deletion of α-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. Journal of Comparative Neurology, 2007, 502, 261-274.	0.9	89
5	Integration of guidance cues: parallel signaling and crosstalk. Trends in Neurosciences, 2013, 36, 295-304.	4.2	86
6	The composition of EphB2 clusters determines the strength in the cellular repulsion response. Journal of Cell Biology, 2014, 204, 409-422.	2.3	73
7	Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors. Frontiers in Synaptic Neuroscience, 2015, 7, 3.	1.3	66
8	In situ architecture of neuronal α-Synuclein inclusions. Nature Communications, 2021, 12, 2110.	5.8	66
9	Cortical and Striatal Circuits in Huntington's Disease. Frontiers in Neuroscience, 2020, 14, 82.	1.4	64
10	GDNF Acts as a Chemoattractant to Support ephrinA-Induced Repulsion of Limb Motor Axons. Current Biology, 2010, 20, 2150-2156.	1.8	58
11	Cortical circuit alterations precede motor impairments in Huntington's disease mice. Scientific Reports, 2019, 9, 6634.	1.6	53
12	Important Contribution of Â-Neurexins to Ca2+-Triggered Exocytosis of Secretory Granules. Journal of Neuroscience, 2006, 26, 10599-10613.	1.7	49
13	Genetic Evidence for a Contribution of EphA:EphrinA Reverse Signaling to Motor Axon Guidance. Journal of Neuroscience, 2012, 32, 5209-5215.	1.7	38
14	The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nature Communications, 2021, 12, 4863.	5.8	35
15	The resilient synapse: insights from genetic interference of synaptic cell adhesion molecules. Cell and Tissue Research, 2006, 326, 617-642.	1.5	22
16	Protein Tyrosine Phosphatase Receptor Type O Inhibits Trigeminal Axon Growth and Branching by Repressing TrkB and Ret Signaling. Journal of Neuroscience, 2013, 33, 5399-5410.	1.7	19
17	The Axon's Balancing Act: cis- and trans-Interactions between Ephs and Ephrins. Neuron, 2011, 71, 1-3.	3.8	18
18	Fluc‣GFP reporter mice reveal differential alterations of neuronal proteostasis in aging and disease. EMBO Journal, 2021, 40, e107260.	3.5	17

#	Article	IF	CITATIONS
19	Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity. Life Science Alliance, 2022, 5, e202101185.	1.3	13
20	The Eph Receptor Family. , 2015, , 165-264.		4
21	Biosensors for Studying Neuronal Proteostasis. Frontiers in Molecular Neuroscience, 2022, 15, 829365.	1.4	1