Zhenghua Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685185/publications.pdf Version: 2024-02-01

ZHENCHUA MENC

#	Article	IF	CITATIONS
1	TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohydrate Polymers, 2020, 230, 115570.	10.2	79
2	Thermal Homeostasis Enabled by Dynamically Regulating the Passive Radiative Cooling and Solar Heating Based on a Thermochromic Hydrogel. ACS Photonics, 2021, 8, 2781-2790.	6.6	48
3	Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials. ACS Applied Materials & Interfaces, 2020, 12, 27241-27248.	8.0	46
4	Thermoelectric Generator Using Space Cold Source. ACS Applied Materials & Interfaces, 2019, 11, 33941-33945.	8.0	45
5	Effects of process parameters on warm and electromagnetic hybrid forming of magnesium alloy sheets. Journal of Materials Processing Technology, 2011, 211, 863-867.	6.3	37
6	A Combined In-Mold Decoration and Microcellular Injection Molding Method for Preparing Foamed Products with Improved Surface Appearance. Polymers, 2019, 11, 778.	4.5	27
7	A hybrid back-propagation neural network and intelligent algorithm combined algorithm for optimizing microcellular foaming injection molding process parameters. Journal of Manufacturing Processes, 2020, 50, 528-538.	5.9	25
8	High-performance yarn supercapacitor based on directly twisted carbon nanotube@bacterial cellulose membrane. Cellulose, 2020, 27, 7649-7661.	4.9	23
9	Mechanism of Bubble Formation in a Combined In-Mold Decoration and Microcellular Foaming Injection Molding Process. Fibers and Polymers, 2019, 20, 1526-1537.	2.1	14
10	Investigation on Foamed PP/Nano-CaCO3 Composites in a Combined in-Mold Decoration and Microcellular Injection Molding Process. Polymers, 2020, 12, 363.	4.5	14
11	A novel cellulose membrane from cattail fibers as separator for Li-ion batteries. Cellulose, 2021, 28, 9309-9321.	4.9	14
12	Investigation on forming defects and crystallization of plastic parts in combined in-mold decoration and microcellular injection molding based on a multiphase flow-solid coupled heat transfer model. International Journal of Heat and Mass Transfer, 2020, 151, 119285.	4.8	13
13	A 24-hour thermoelectric generator simultaneous using solar heat energy and space cold energy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251, 107038.	2.3	11
14	Effect of film types on thermal response, cellular structure, forming defects and mechanical properties of combined in-mold decoration and microcellular injection molding parts. Journal of Materials Science and Technology, 2021, 92, 98-108.	10.7	9
15	Joining Performance and Microstructure of the 2024/7075 Aluminium Alloys Welded Joints by Vaporizing Foil Actuator Welding. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 368-372.	1.0	7
16	Numerical simulation of the joining interface of dissimilar metals in vaporizing foil actuator welding: Forming mechanism and factors. Journal of Manufacturing Processes, 2020, 60, 654-665.	5.9	7
17	Cellular structure and mechanical strength of straw fiber/polypropylene plastics under chemical foam molding. Journal of the Textile Institute, 2021, 112, 109-116.	1.9	7
18	Effect of POE on mechanical properties and cellular structure of PP/Nano-CaCO ₃ composites in IMD/MIM process. Materials Research Express, 2020, 7, 095308.	1.6	7

Zhenghua Meng

#	Article	IF	CITATIONS
19	Effects of biaxial tensile on the deformation behavior of DP590 high-strength steel sheet under high strain rate. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1441-1445.	1.0	6
20	Electromagnetic forming of aluminum alloy strip by imposing inverse current instead of inducing eddy current. International Journal of Advanced Manufacturing Technology, 2020, 111, 3481-3488.	3.0	6
21	Deformation behaviour and damage evolution of aluminium alloy sheet in electromagnetic forming with uniform pressure actuator. International Journal of Advanced Manufacturing Technology, 2020, 109, 745-754.	3.0	4
22	The effects of die counter-impact on aluminum alloy sheet during electromagnetic forming. International Journal of Advanced Manufacturing Technology, 2021, 116, 3593-3601.	3.0	3
23	Interface formation and interlayer factors of three-dissimilar-metal layers joint in impact welding. Journal of Manufacturing Processes, 2021, 70, 414-426.	5.9	3
24	Comparison of Johnson-Cook and Cowper-Symonds models for aluminum alloy sheet by inverse identification based on electromagnetic bulge. International Journal of Material Forming, 2022, 15, 1.	2.0	3
25	Mechanism Study of Ultrasonic-Vibration-Assisted Underfill Process for Flip-Chip Encapsulation. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1711-1722.	2.5	1