
David A Elliott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7685157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation and characterization of human embryonic stem cell-derived heart field-specific cardiomyocytes unravels new insights into their transcriptional and electrophysiological profiles. Cardiovascular Research, 2022, 118, 828-843.	1.8	14
2	3D-cardiomics: A spatial transcriptional atlas of the mammalian heart. Journal of Molecular and Cellular Cardiology, 2022, 163, 20-32.	0.9	16
3	Effect and application of cryopreserved threeâ€dimensional microcardiac spheroids in myocardial infarction therapy. Clinical and Translational Medicine, 2022, 12, e721.	1.7	5
4	The Australia and New Zealand Cardioâ€Oncology Registry: evaluation of chemotherapyâ€related cardiotoxicity in a national cohort of paediatric cancer patients. Internal Medicine Journal, 2021, 51, 229-234.	0.5	6
5	Optimal Detection of Cardiac Sequelae. JACC: CardioOncology, 2021, 3, 154-156.	1.7	0
6	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	13.5	131
7	Sex-Specific Control of Human Heart Maturation by the Progesterone Receptor. Circulation, 2021, 143, 1614-1628.	1.6	42
8	Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned?. International Journal of Molecular Sciences, 2021, 22, 7730.	1.8	14
9	Alpha-protein kinase 3 (<i>ALPK3</i>) truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy. European Heart Journal, 2021, 42, 3063-3073.	1.0	51
10	Exercise cardiovascular magnetic resonance reveals reduced cardiac reserve in pediatric cancer survivors with impaired cardiopulmonary fitness. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 64.	1.6	22
11	β-catenin drives distinct transcriptional networks in proliferative and non-proliferative cardiomyocytes. Development (Cambridge), 2020, 147, .	1.2	24
12	Evaluating anthracycline cardiotoxicity associated single nucleotide polymorphisms in a paediatric cohort with early onset cardiomyopathy. Cardio-Oncology, 2020, 6, 5.	0.8	6
13	The role of cardiac transcription factor NKX2-5 in regulating the human cardiac miRNAome. Scientific Reports, 2019, 9, 15928.	1.6	3
14	Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway. Cell Stem Cell, 2019, 24, 895-907.e6.	5.2	199
15	Pediatric Anthracyclineâ€Induced Cardiotoxicity: Mechanisms, Pharmacogenomics, and Pluripotent Stemâ€Cell Modeling. Clinical Pharmacology and Therapeutics, 2019, 105, 614-624.	2.3	30
16	Stem cell topography splits growth and homeostatic functions in the fish gill. ELife, 2019, 8, .	2.8	16
17	NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nature Communications, 2018, 9, 1373.	5.8	77
18	Systematic review of pharmacogenomics and adverse drug reactions in paediatric oncology patients. Pediatric Blood and Cancer, 2018, 65, e26937.	0.8	13

DAVID A ELLIOTT

#	Article	IF	CITATIONS
19	Isolation and characterization of ventricular-like cells derived from NKX2-5 and MLC2v double knock-in human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 1278-1284.	1.0	9
20	3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnology and Bioengineering, 2018, 115, 630-644.	1.7	108
21	Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell–derived cardiomyocytes. Journal of Heart and Lung Transplantation, 2017, 36, 684-693.	0.3	29
22	Development of a human cardiac organoid injury model reveals innate regenerative potential. Development (Cambridge), 2017, 144, 1118-1127.	1.2	127
23	Genetic determinants of anthracycline cardiotoxicity – ready for the clinic?. British Journal of Clinical Pharmacology, 2017, 83, 1141-1142.	1.1	10
24	Chemotherapyâ€related cardiotoxicity: are Australian practitioners missing the point?. Internal Medicine Journal, 2017, 47, 1166-1172.	0.5	6
25	Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. Trends in Molecular Medicine, 2017, 23, 651-668.	3.5	21
26	Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8372-E8381.	3.3	361
27	ALPK3-deficient cardiomyocytes generated from patient-derived induced pluripotent stem cells and mutant human embryonic stem cells display abnormal calcium handling and establish that ALPK3 deficiency underlies familial cardiomyopathy. European Heart Journal, 2016, 37, 2586-2590.	1.0	49
28	GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives. Stem Cell Reports, 2016, 7, 518-526.	2.3	27
29	Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros. Nature Biotechnology, 2016, 34, 1168-1179.	9.4	150
30	CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 95-108.	2.3	30
31	Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors. Stem Cells Translational Medicine, 2016, 5, 67-74.	1.6	23
32	Atrialâ€like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrialâ€selective pharmacology. EMBO Molecular Medicine, 2015, 7, 394-410.	3.3	310
33	Cardiac Repair With a Novel Population of Mesenchymal Stem Cells Resident in the Human Heart. Stem Cells, 2015, 33, 3100-3113.	1.4	53
34	Cardiomyocyte differentiation of pluripotent stem cells with SB203580 analogues correlates with Wnt pathway CK1 inhibition independent of p38 MAPK signaling. Journal of Molecular and Cellular Cardiology, 2015, 80, 56-70.	0.9	18
35	Multipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System. Stem Cells, 2015, 33, 1759-1770.	1.4	80
36	Comparing mouse and human pluripotent stem cell derived cardiac cells: Both systems have advantages for pharmacological and toxicological screening. Journal of Pharmacological and Toxicological Screening. Journal of Pharmacological and	0.3	2

DAVID A ELLIOTT

#	Article	IF	CITATIONS
37	Dual Reporter <i>MESP1mCherry/w-NKX2-5eGFP/w</i> hESCs Enable Studying Early Human Cardiac Differentiation. Stem Cells, 2015, 33, 56-67.	1.4	65
38	Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. Methods in Molecular Biology, 2014, 1353, 163-180.	0.4	48
39	Controlling Expansion and Cardiomyogenic Differentiation of Human Pluripotent Stem Cells in Scalable Suspension Culture. Stem Cell Reports, 2014, 3, 1132-1146.	2.3	189
40	SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Research, 2014, 13, 172-179.	0.3	63
41	Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones. Experimental Cell Research, 2014, 327, 297-306.	1.2	13
42	FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors. Stem Cell Reports, 2014, 2, 925-937.	2.3	42
43	Cellular Reprogramming. Circulation: Heart Failure, 2013, 6, 1102-1107.	1.6	2
44	Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO Journal, 2013, 32, 3161-3175.	3.5	174
45	PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function. Stem Cell Reports, 2013, 1, 560-574.	2.3	59
46	The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials, 2013, 34, 2463-2471.	5.7	131
47	Human Embryonic Stem Cell Derived Mesenchymal Progenitors Express Cardiac Markers but Do Not Form Contractile Cardiomyocytes. PLoS ONE, 2013, 8, e54524.	1.1	26
48	Congenital Asplenia in Mice and Humans with Mutations in a Pbx/Nkx2-5/p15 Module. Developmental Cell, 2012, 22, 913-926.	3.1	70
49	Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells to Cardiomyocytes. Circulation Research, 2012, 111, 344-358.	2.0	641
50	INS GFP/w human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells. Diabetologia, 2012, 55, 694-706.	2.9	113
51	Analysis of Mitochondrial Function and Localisation during Human Embryonic Stem Cell Differentiation In Vitro. PLoS ONE, 2012, 7, e52214.	1.1	37
52	NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods, 2011, 8, 1037-1040.	9.0	384
53	SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 2011, 29, 1011-1018.	9.4	500
54	A Targeted <i>NKX2.1</i> Human Embryonic Stem Cell Reporter Line Enables Identification of Human Basal Forebrain Derivatives. Stem Cells, 2011, 29, 462-473.	1.4	99

DAVID A ELLIOTT

#	Article	IF	CITATIONS
55	NK-2 Class Homeodomain Proteins. , 2010, , 569-597.		10
56	Elastomeric nanocomposites as cell delivery vehicles and cardiac support devices. Soft Matter, 2010, 6, 4715.	1.2	65
57	The GAL4 System. Methods in Molecular Biology, 2008, 420, 79-95.	0.4	120
58	The GAL4 System: A Versatile Toolkit for Gene Expression in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2008, 2008, pdb.top49.	0.2	22
59	Time to mend a broken heart. Stem Cell Research, 2007, 1, 4-6.	0.3	2
60	A tyrosine-rich domain within homeodomain transcription factor Nkx2-5 is an essential element in the early cardiac transcriptional regulatory machinery. Development (Cambridge), 2006, 133, 1311-1322.	1.2	28
61	Transcriptional regulation of the murine promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovascular Research, 2004, 64, 402-411.	1.8	91
62	Independent Regulation of Synaptic Size and Activity by the Anaphase-Promoting Complex. Cell, 2004, 119, 707-718.	13.5	214
63	Cardiac homeobox gene NKX2-5mutations and congenital heart disease. Journal of the American College of Cardiology, 2003, 41, 2072-2076.	1.2	231
64	Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Developmental Biology, 2003, 262, 206-224.	0.9	260
65	Developmental paradigms in heart disease: insights from tinman. Annals of Medicine, 2002, 34, 148-156.	1.5	39
66	Developmental paradigms in heart disease: insights from tinman. Annals of Medicine, 2002, 34, 148-156.	1.5	21
67	Homeodomain Factor Nkx2-5 in Heart Development and Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 107-114.	2.0	67
68	Cardiac Septal and Valvular Dysmorphogenesis in Mice Heterozygous for Mutations in the Homeobox Gene <i>Nkx2-5</i> . Circulation Research, 2000, 87, 888-895.	2.0	325
69	Transcriptional Control and Pattern Formation in the Developing Vertebrate Heart. , 1999, , 111-129.		16