Isabel Rubio-Aliaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7684766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mammalian peptide transporters as targets for drug delivery. Trends in Pharmacological Sciences, 2002, 23, 434-440.	4.0	239
2	Functional Characterization of Two Novel Mammalian Electrogenic Proton-dependent Amino Acid Cotransporters. Journal of Biological Chemistry, 2002, 277, 22966-22973.	1.6	143
3	Targeted Disruption of the Peptide Transporter Pept2 Gene in Mice Defines Its Physiological Role in the Kidney. Molecular and Cellular Biology, 2003, 23, 3247-3252.	1.1	96
4	An update on renal peptide transporters. American Journal of Physiology - Renal Physiology, 2003, 284, F885-F892.	1.3	74
5	Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention. Physiological Genomics, 2011, 43, 408-416.	1.0	64
6	Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives. Molecular Nutrition and Food Research, 2011, 55, 341-358.	1.5	63
7	The elevation of circulating fibroblast growth factor 23 without kidney disease does not increaseÂcardiovascular disease risk. Kidney International, 2018, 94, 49-59.	2.6	62
8	Increased Plasma Citrulline in Mice Marks Diet-Induced Obesity and May Predict the Development of the Metabolic Syndrome. PLoS ONE, 2013, 8, e63950.	1.1	60
9	Metabolomics of prolonged fasting in humans reveals new catabolic markers. Metabolomics, 2011, 7, 375-387.	1.4	59
10	Profiling at mRNA, protein, and metabolite levels reveals alterations in renal amino acid handling and glutathione metabolism in kidney tissue ofPept2â^'/â^'mice. Physiological Genomics, 2007, 28, 301-310.	1.0	58
11	H+-peptide cotransport in the human bile duct epithelium cell line SK-ChA-1. American Journal of Physiology - Renal Physiology, 2002, 283, G222-G229.	1.6	56
12	Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1. American Journal of Physiology - Renal Physiology, 2011, 301, G128-G137.	1.6	56
13	Cloning and Characterization of the Gene Encoding the Mouse Peptide Transporter PEPT2. Biochemical and Biophysical Research Communications, 2000, 276, 734-741.	1.0	51
14	A cluster of proton/amino acid transporter genes in the human and mouse genomesâ~†. Genomics, 2003, 82, 47-56.	1.3	49
15	The Proton/Amino Acid Cotransporter PAT2 Is Expressed in Neurons with a Different Subcellular Localization than Its Paralog PAT1. Journal of Biological Chemistry, 2004, 279, 2754-2760.	1.6	46
16	Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatric Nephrology, 2019, 34, 549-559.	0.9	46
17	Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels, 2016, 10, 440-452.	1.5	45
18	Dose-Dependent Effects of Dietary Fat on Development of Obesity in Relation to Intestinal Differential Gene Expression in C57BL/6J Mice. PLoS ONE, 2011, 6, e19145.	1.1	44

ISABEL RUBIO-ALIAGA

#	Article	IF	CITATIONS
19	Genetic diseases of renal phosphate handling. Nephrology Dialysis Transplantation, 2014, 29, iv45-iv54.	0.4	44
20	Gene ablation for PEPT1 in mice abolishes the effects of dipeptides on small intestinal fluid absorption, short-circuit current, and intracellular pH. American Journal of Physiology - Renal Physiology, 2010, 299, G265-G274.	1.6	42
21	Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Archiv European Journal of Physiology, 2016, 468, 213-227.	1.3	42
22	Biomarkers of Nutrient Bioactivity and Efficacy. Journal of Clinical Gastroenterology, 2012, 46, 545-554.	1.1	37
23	The Intestinal Peptide Transporter PEPT1 Is Involved in Food Intake Regulation in Mice Fed a High-Protein Diet. PLoS ONE, 2011, 6, e26407.	1.1	35
24	Cell-based simulation of dynamic expression patterns in the presomitic mesoderm. Journal of Theoretical Biology, 2007, 248, 120-129.	0.8	30
25	New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis. Mammalian Genome, 2012, 23, 416-430.	1.0	30
26	Altered signalling from germline to intestine pushes <i>dafâ€2;peptâ€1 Caenorhabditis elegans</i> into extreme longevity. Aging Cell, 2010, 9, 636-646.	3.0	27
27	2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting. BMC Medical Genomics, 2011, 4, 24.	0.7	26
28	A Genetic Screen for Modifiers of the Delta1-Dependent Notch Signaling Function in the Mouse. Genetics, 2007, 175, 1451-1463.	1.2	22
29	The NuGO proof of principle study package: a collaborative research effort of the European Nutrigenomics Organisation. Genes and Nutrition, 2008, 3, 147-151.	1.2	22
30	NRF2 regulates the glutamine transporter Slc38a3 (SNAT3) in kidney in response to metabolic acidosis. Scientific Reports, 2018, 8, 5629.	1.6	20
31	Marked alterations in the structure, dynamics and maturation of growth plate likely explain growth retardation and bone deformities of young Hyp mice. Bone, 2018, 116, 187-195.	1.4	20
32	Dll1 Haploinsufficiency in Adult Mice Leads to a Complex Phenotype Affecting Metabolic and Immunological Processes. PLoS ONE, 2009, 4, e6054.	1.1	17
33	Phenotype analysis of mice deficient in the peptide transporter PEPT2 in response to alterations in dietary protein intake. Pflugers Archiv European Journal of Physiology, 2006, 452, 300-306.	1.3	16
34	Phosphate intake, hyperphosphatemia, and kidney function. Pflugers Archiv European Journal of Physiology, 2022, 474, 935-947.	1.3	16
35	Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARÎ ³ 2 P12A. Journal of Nutritional Biochemistry, 2017, 43, 98-106.	1.9	14
36	Features and Strategies of ENU Mouse Mutagenesis. Current Pharmaceutical Biotechnology, 2009, 10, 198-213.	0.9	14

3

ISABEL RUBIO-ALIAGA

#	Article	IF	CITATIONS
37	Direct visualization of peptide uptake activity in the central nervous system of the rat. Neuroscience Letters, 2004, 364, 32-36.	1.0	13
38	New metabolic interdependencies revealed by plasma metabolite profiling after two dietary challenges. Metabolomics, 2011, 7, 388-399.	1.4	13
39	Differential cystine and dibasic amino acid handling after loss of function of the amino acid transporter b ^{0,+} AT (Slc7a9) in mice. American Journal of Physiology - Renal Physiology, 2013, 305, F1645-F1655.	1.3	13
40	Systemic Jak1 activation provokes hepatic inflammation and imbalanced FGF23 production and cleavage. FASEB Journal, 2021, 35, e21302.	0.2	13
41	Phosphate and Kidney Healthy Aging. Kidney and Blood Pressure Research, 2020, 45, 802-811.	0.9	12
42	Differential regulation of pancreatic digestive enzymes during chronic high-fat diet-induced obesity in C57BL/6J mice. British Journal of Nutrition, 2014, 112, 154-161.	1.2	11
43	And the fat lady sings about phosphate and calcium. Kidney International, 2017, 91, 270-272.	2.6	11
44	Model organisms in molecular nutrition research. Molecular Nutrition and Food Research, 2012, 56, 844-853.	1.5	10
45	MAPK inhibition and growth hormone: a promising therapy in XLH. FASEB Journal, 2019, 33, 8349-8362.	0.2	10
46	A chronic high phosphate intake in mice is detrimental for bone health without major renal alterations. Nephrology Dialysis Transplantation, 2021, 36, 1183-1191.	0.4	9
47	Fibroblast growth factor 23 in chronic kidney disease: what is its role in cardiovascular disease?. Nephrology Dialysis Transplantation, 2019, 34, 1986-1990.	0.4	6
48	Genome-wide search for genes that modulate inflammatory arthritis caused by Ali18 mutation in mice. Mammalian Genome, 2009, 20, 152-161.	1.0	5
49	Expression of the <i>ob</i> (obese) gene during lactation in mice. Biochemical Society Transactions, 1996, 24, 157S-157S.	1.6	4
50	Jak1/Stat3 Activation Alters Phosphate Metabolism Independently of Sex and Extracellular Phosphate Levels. Kidney and Blood Pressure Research, 2021, 46, 714-722.	0.9	2
51	Systemic Jak1 activation causes extrarenal calcitriol production and skeletal alterations provoking stunted growth. FASEB Journal, 2021, 35, e21721.	0.2	1
52	Chronic High Phosphate Intake in Mice Affects Macronutrient Utilization and Body Composition. Molecular Nutrition and Food Research, 2022, , 2100949.	1.5	1
53	PEPT-2, Peptide Transporter 2. , 2007, , 1-4.		0
54	PEPT-1, Peptide Transporter 1. , 2007, , 1-5.		0

PEPT-1, Peptide Transporter 1., 2007, , 1-5. 54

#	Article	IF	CITATIONS
55	Differential regulation of pancreas digestive enzymes during the development of dietâ€inducedâ€obesity of C57BL/6J mice. FASEB Journal, 2012, 26, 375.7.	0.2	0