Xuefeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7684437/publications.pdf Version: 2024-02-01

XHEFENC CHEN

#	Article	IF	CITATIONS
1	Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3. Nature Communications, 2022, 13, 1390.	12.8	17
2	Discovery of electric devil's staircase in perovskite antiferroelectric. Science Advances, 2022, 8, eabl9088.	10.3	17
3	Constructing ferroelectric–antiferroelectric phase boundary in PbZrO ₃ -based ceramics for enhancing hydrostatic-pressure-induced depolarization performances significantly. Journal of Materials Chemistry C, 2022, 10, 9132-9145.	5.5	3
4	Electric-induced devil's staircase in perovskite antiferroelectric. Journal of Applied Physics, 2022, 131, .	2.5	1
5	Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. Journal of Materiomics, 2021, 7, 339-346.	5.7	26
6	Chemically Tunable Textured Interfacial Defects in PbZrO ₃ -Based Antiferroelectric Perovskite Oxides. Chemistry of Materials, 2021, 33, 6743-6751.	6.7	5
7	Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nature Communications, 2020, 11, 3809.	12.8	81
8	Evaluation of various methods for energy storage calculation in nonlinear capacitors. AIP Advances, 2020, 10, .	1.3	7
9	Grinding strain induced antiferroelectric-ferroelectric-antiferroelectric sandwich structure in bulk ceramics. Scripta Materialia, 2020, 182, 27-31.	5.2	1
10	Microstructural evolution in chemical solution deposited PbZrO3 thin films of varying thickness. Journal of Applied Physics, 2020, 128, 235302.	2.5	4
11	Enhanced energy storage properties and stability in (Pb0.895La0.07)(ZrxTi1-x)O3 antiferroelectric ceramics. Ceramics International, 2019, 45, 15898-15905.	4.8	29
12	Excellent comprehensive energy storage properties of novel lead-free NaNbO ₃ -based ceramics for dielectric capacitor applications. Journal of Materials Chemistry C, 2019, 7, 5639-5645.	5.5	219
13	Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1â^x)NaNbO3-xCaSnO3 ceramics. Applied Physics Letters, 2019, 114, .	3.3	70
14	Dielectric and ferroelectric properties of lanthanumâ€modified lead zirconate stannate titanate (42/40/18) ceramics. Journal of the American Ceramic Society, 2018, 101, 3979-3988.	3.8	12
15	Enhanced breakdown strength and energy density of antiferroelectric Pb,La(Zr,Sn,Ti)O3 ceramic by forming core-shell structure. Journal of the European Ceramic Society, 2018, 38, 3170-3176.	5.7	61
16	La/Mn Codoped AgNbO ₃ Lead-Free Antiferroelectric Ceramics with Large Energy Density and Power Density. ACS Sustainable Chemistry and Engineering, 2018, 6, 16151-16159.	6.7	105
17	High permittivity (1â°' <i>x</i>)Bi _{1/2} Na _{1/2} TiO ₃ â€ <i>x</i> PbMg _{1/3} Nb _{ ceramics for highâ€ŧemperatureâ€stable capacitors. Journal of the American Ceramic Society, 2018, 101, 4434-4440.}	2/3< <u>/</u> sub>	O ₃
18	Incommensurately Modulated Structures in Zr-rich PZT: Periodic Nanodomains, Reciprocal Configuration, and Nucleation. Crystal Growth and Design, 2018, 18, 4395-4402.	3.0	6

XUEFENG CHEN

#	Article	IF	CITATIONS
19	Pulse discharge properties of PLZST antiferroelectric ceramics compared with ferroelectric and linear dielectrics. AIP Advances, 2017, 7, .	1.3	25
20	High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics. Journal of Applied Physics, 2016, 120, .	2.5	102
21	Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O3 antiferroelectric bulk ceramics. AIP Advances, 2016, 6, 055203.	1.3	17
22	Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Applied Physics Letters, 2015, 106, .	3.3	204
23	High room-temperature pyroelectric response of MgO-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics. Infrared Physics and Technology, 2013, 61, 325-329.	2.9	5
24	Dynamic Hysteresis and Scaling Behavior of Energy Density in <scp><scp>Pb</scp></scp> _{0.99} <scp><scp>Nb</scp></scp> _{0.02} [(<scp><scp>ZrAntiferroelectric Bulk Ceramics. Journal of the American Ceramic Society, 2012, 95, 1163-1166.</scp></scp>	p>3.∦scp>∢	(su t2 >0.60
25	Charge–Discharge Properties of an Antiferroelectric Ceramics Capacitor Under Different Electric Fields. Journal of the American Ceramic Society, 2010, 93, 4015-4017.	3.8	183
26	Low thermal hysteresis pyroelectric response near the ferroelectric/antiferroelectric phase transition in Pb0.97La0.02(Zr0.42Sn0.40Ti0.18)O3 ceramics. Journal of Applied Physics, 2010, 108, 086105.	2.5	17
27	Reversible pyroelectric response in Pb0.955La0.03(Zr0.42Sn0.40Ti0.18)O3 ceramics near its phase transition. Applied Physics Letters, 2009, 94, .	3.3	43
28	Charge-discharge properties of lead zirconate stannate titanate ceramics. Journal of Applied Physics, 2009, 106, 034105.	2.5	120