
Xuefeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7684437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excellent comprehensive energy storage properties of novel lead-free NaNbO ₃ -based ceramics for dielectric capacitor applications. Journal of Materials Chemistry C, 2019, 7, 5639-5645.	5.5	219
2	Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Applied Physics Letters, 2015, 106, .	3.3	204
3	Charge–Discharge Properties of an Antiferroelectric Ceramics Capacitor Under Different Electric Fields. Journal of the American Ceramic Society, 2010, 93, 4015-4017.	3.8	183
4	Charge-discharge properties of lead zirconate stannate titanate ceramics. Journal of Applied Physics, 2009, 106, 034105.	2.5	120
5	La/Mn Codoped AgNbO ₃ Lead-Free Antiferroelectric Ceramics with Large Energy Density and Power Density. ACS Sustainable Chemistry and Engineering, 2018, 6, 16151-16159.	6.7	105
6	High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics. Journal of Applied Physics, 2016, 120, .	2.5	102
7	Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nature Communications, 2020, 11, 3809.	12.8	81
8	Dynamic Hysteresis and Scaling Behavior of Energy Density in <scp><scp>Pb</scp></scp> _{0.99} <scp><scp>Nb</scp>0.02[(<scp><scp>ZrAntiferroelectric Bulk Ceramics. Journal of the American Ceramic Society, 2012, 95, 1163-1166.</scp></scp></scp>	:p> 3./s cp> <	<sut2>0.60</sut2>
9	Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1â^'x)NaNbO3-xCaSnO3 ceramics. Applied Physics Letters, 2019, 114, .	3.3	70
10	Enhanced breakdown strength and energy density of antiferroelectric Pb,La(Zr,Sn,Ti)O3 ceramic by forming core-shell structure. Journal of the European Ceramic Society, 2018, 38, 3170-3176.	5.7	61
11	Reversible pyroelectric response in Pb0.955La0.03(Zr0.42Sn0.40Ti0.18)O3 ceramics near its phase transition. Applied Physics Letters, 2009, 94, .	3.3	43
12	Enhanced energy storage properties and stability in (Pb0.895La0.07)(ZrxTi1-x)O3 antiferroelectric ceramics. Ceramics International, 2019, 45, 15898-15905.	4.8	29
13	Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. Journal of Materiomics, 2021, 7, 339-346.	5.7	26
14	Pulse discharge properties of PLZST antiferroelectric ceramics compared with ferroelectric and linear dielectrics. AIP Advances, 2017, 7, .	1.3	25
15	Low thermal hysteresis pyroelectric response near the ferroelectric/antiferroelectric phase transition in Pb0.97La0.02(Zr0.42Sn0.40Ti0.18)O3 ceramics. Journal of Applied Physics, 2010, 108, 086105.	2.5	17
16	Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O3 antiferroelectric bulk ceramics. AIP Advances, 2016, 6, 055203.	1.3	17
17	High permittivity (1â²' <i>x</i>)Bi _{1/2} Na _{1/2} TiO ₃ â€ <i>x</i> PbMg _{1/3} Nb _{2 ceramics for highâ€ŧemperatureâ€stable capacitors. Journal of the American Ceramic Society, 2018, 101, 4434-4440.}	/3< <u>/</u> sub>C) ₃
18	Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3. Nature Communications, 2022, 13, 1390.	12.8	17

XUEFENG CHEN

#	Article	IF	CITATIONS
19	Discovery of electric devil's staircase in perovskite antiferroelectric. Science Advances, 2022, 8, eabl9088.	10.3	17
20	Dielectric and ferroelectric properties of lanthanumâ€modified lead zirconate stannate titanate (42/40/18) ceramics. Journal of the American Ceramic Society, 2018, 101, 3979-3988.	3.8	12
21	Evaluation of various methods for energy storage calculation in nonlinear capacitors. AIP Advances, 2020, 10, .	1.3	7
22	Incommensurately Modulated Structures in Zr-rich PZT: Periodic Nanodomains, Reciprocal Configuration, and Nucleation. Crystal Growth and Design, 2018, 18, 4395-4402.	3.0	6
23	High room-temperature pyroelectric response of MgO-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics. Infrared Physics and Technology, 2013, 61, 325-329.	2.9	5
24	Chemically Tunable Textured Interfacial Defects in PbZrO ₃ -Based Antiferroelectric Perovskite Oxides. Chemistry of Materials, 2021, 33, 6743-6751.	6.7	5
25	Microstructural evolution in chemical solution deposited PbZrO3 thin films of varying thickness. Journal of Applied Physics, 2020, 128, 235302.	2.5	4
26	Constructing ferroelectric–antiferroelectric phase boundary in PbZrO ₃ -based ceramics for enhancing hydrostatic-pressure-induced depolarization performances significantly. Journal of Materials Chemistry C, 2022, 10, 9132-9145.	5.5	3
27	Grinding strain induced antiferroelectric-ferroelectric-antiferroelectric sandwich structure in bulk ceramics. Scripta Materialia, 2020, 182, 27-31.	5.2	1
28	Electric-induced devil's staircase in perovskite antiferroelectric. Journal of Applied Physics, 2022, 131, .	2.5	1