Fernanda Borges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7683948/publications.pdf

Version: 2024-02-01

348 papers 13,741 citations

28190 55 h-index 101 g-index

369 all docs 369 docs citations

369 times ranked 16819 citing authors

#	Article	IF	CITATIONS
1	Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Current Medicinal Chemistry, 2005, 12, 887-916.	1.2	828
2	Chromone: A Valid Scaffold in Medicinal Chemistry. Chemical Reviews, 2014, 114, 4960-4992.	23.0	576
3	New insights on the anticancer properties of dietary polyphenols. Medicinal Research Reviews, 2006, 26, 747-766.	5.0	483
4	Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 2015, 183, 235-258.	4.2	340
5	Phenolic Acids and Derivatives: Studies on the Relationship among Structure, Radical Scavenging Activity, and Physicochemical Parametersâ€. Journal of Agricultural and Food Chemistry, 2000, 48, 2122-2126.	2.4	329
6	Progress Towards the Discovery of Xanthine Oxidase Inhibitors. Current Medicinal Chemistry, 2002, 9, 195-217.	1.2	308
7	Phenolic acid derivatives with potential anticancer properties––a structure–activity relationship study. Part 1: Methyl, propyl and octyl esters of caffeic and gallic acids. Bioorganic and Medicinal Chemistry, 2004, 12, 3581-3589.	1.4	285
8	Chromone as a Privileged Scaffold in Drug Discovery: Recent Advances. Journal of Medicinal Chemistry, 2017, 60, 7941-7957.	2.9	273
9	Wine and grape polyphenols — A chemical perspective. Food Research International, 2013, 54, 1844-1858.	2.9	259
10	Anticancer Activity of Phenolic Acids of Natural or Synthetic Origin:  A Structureâ^'Activity Study. Journal of Medicinal Chemistry, 2003, 46, 5395-5401.	2.9	250
11	Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Research International, 2013, 2013, 1-11.	0.9	206
12	Furocoumarins in Medicinal Chemistry. Synthesis, Natural Occurrence and Biological Activity. Current Medicinal Chemistry, 2004, 11, 3239-3261.	1.2	188
13	New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules, 2016, 21, 877.	1.7	172
14	Antioxidant Properties of Hydroxycinnamic Acids: A Review of Structure- Activity Relationships. Current Medicinal Chemistry, 2013, 20, 4436-4450.	1.2	150
15	Structure–property studies on the antioxidant activity of flavonoids present in diet. Free Radical Biology and Medicine, 2005, 39, 1099-1108.	1.3	144
16	The Anticancer Properties of Dietary Polyphenols and its Relation with Apoptosis. Current Pharmaceutical Design, 2010, 16, 114-134.	0.9	143
17	Alzheimer's disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Research Reviews, 2014, 15, 116-145.	5.0	141
18	Chromone, a Privileged Scaffold for the Development of Monoamine Oxidase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 5165-5173.	2.9	140

#	Article	IF	Citations
19	Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde?. Drug Discovery Today, 2014, 19, 1069-1080.	3.2	140
20	Antioxidant profile of dihydroxy- and trihydroxyphenolic acids-A structure–activity relationship study. Free Radical Research, 2006, 40, 433-442.	1.5	136
21	Methamphetamineâ€induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. European Journal of Neuroscience, 2010, 31, 315-326.	1.2	125
22	Lipophilic Caffeic and Ferulic Acid Derivatives Presenting Cytotoxicity against Human Breast Cancer Cells. Chemical Research in Toxicology, 2011, 24, 763-774.	1.7	115
23	Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Research, 2006, 1089, 44-54.	1.1	114
24	Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: Role of tight junction proteins and matrix metalloproteinase-9. Brain Research, 2011, 1411, 28-40.	1.1	110
25	Methamphetamineâ€Induced Early Increase of ILâ€6 and TNFâ€Î± mRNA Expression in the Mouse Brain. Annals of the New York Academy of Sciences, 2008, 1139, 103-111.	1.8	106
26	Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie, 2012, 94, 961-967.	1.3	103
27	Effects of olive oil polyphenols on erythrocyte oxidative damage. Molecular Nutrition and Food Research, 2009, 53, 609-616.	1.5	95
28	Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. European Journal of Medicinal Chemistry, 2011, 46, 773-777.	2.6	95
29	Lipophilic phenolic antioxidants: Correlation between antioxidant profile, partition coefficients and redox properties. Bioorganic and Medicinal Chemistry, 2010, 18, 5816-5825.	1.4	94
30	Methamphetamine induces alterations on hippocampal NMDA and AMPA receptor subunit levels and impairs spatial working memory. Neuroscience, 2007, 150, 433-441.	1.1	91
31	Structureâ^'Propertyâ^'Activity Relationship of Phenolic Acids and Derivatives. Protocatechuic Acid Alkyl Esters. Journal of Agricultural and Food Chemistry, 2010, 58, 6986-6993.	2.4	91
32	Street heroin induces mitochondrial dysfunction and apoptosis in rat cortical neurons. Journal of Neurochemistry, 2007, 101, 543-554.	2.1	88
33	New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5157-5160.	1.0	87
34	Caffeic acid derivatives, analogs and applications: a patent review (2009 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 1257-1270.	2.4	87
35	Discovery of New Chemical Entities for Old Targets: Insights on the Lead Optimization of Chromone-Based Monoamine Oxidase B (MAO-B) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 5879-5893.	2.9	87
36	Dietary Phenolic Acids and Derivatives. Evaluation of the Antioxidant Activity of Sinapic Acid and Its Alkyl Esters. Journal of Agricultural and Food Chemistry, 2010, 58, 11273-11280.	2.4	85

#	Article	IF	Citations
37	Electrochemical oxidation of amphetamine-like drugs and application to electroanalysis of ecstasy in human serum. Bioelectrochemistry, 2010, 79, 77-83.	2.4	83
38	Isothiazolinone Biocides: Chemistry, Biological, and Toxicity Profiles. Molecules, 2020, 25, 991.	1.7	83
39	Hepatotoxicity of 3,4-methylenedioxyamphetamine and ?-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates. Archives of Toxicology, 2004, 78, 16-24.	1.9	82
40	Computational chemistry development of a unified free energy Markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. Journal of Computational Chemistry, 2007, 28, 1909-1923.	1.5	79
41	The toxicity of N-methyl-î±-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology, 2004, 200, 193-203.	2.0	77
42	Chromone 3-phenylcarboxamides as potent and selective MAO-B inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 707-709.	1.0	76
43	β-Nitrostyrene derivatives as potential antibacterial agents: A structure–property–activity relationship study. Bioorganic and Medicinal Chemistry, 2006, 14, 4078-4088.	1.4	7 3
44	New insights into the antioxidant activity of hydroxycinnamic acids: Synthesis and physicochemical characterization of novel halogenated derivatives. European Journal of Medicinal Chemistry, 2009, 44, 2092-2099.	2.6	73
45	Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells. Archives of Toxicology, 2002, 76, 581-588.	1.9	72
46	Metabolism Is Required for the Expression of Ecstasy-Induced Cardiotoxicity in Vitro. Chemical Research in Toxicology, 2004, 17, 623-632.	1.7	71
47	Effects of Phenolic Propyl Esters on the Oxidative Stability of Refined Sunflower Oil. Journal of Agricultural and Food Chemistry, 2001, 49, 3936-3941.	2.4	69
48	Neurotoxicity of heroin–cocaine combinations in rat cortical neurons. Toxicology, 2010, 276, 11-17.	2.0	68
49	Multi-target spectral moments for QSAR and Complex Networks study of antibacterial drugs. European Journal of Medicinal Chemistry, 2009, 44, 4516-4521.	2.6	66
50	Synthesis and Vasorelaxant and Platelet Antiaggregatory Activities of a New Series of 6-Halo-3-phenylcoumarins. Molecules, 2010, 15, 270-279.	1.7	63
51	Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 111-124.	2.0	60
52	Evaluation of the lipophilic properties of opioids, amphetamine-like drugs, and metabolites through electrochemical studies at the interface between two immiscible solutions. Analytical Biochemistry, 2007, 361, 236-243.	1.1	59
53	Tight-Binding Inhibition of Human Monoamine Oxidase B by Chromone Analogs: A Kinetic, Crystallographic, and Biological Analysis. Journal of Medicinal Chemistry, 2018, 61, 4203-4212.	2.9	58
54	Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. European Journal of Medicinal Chemistry, 2018, 158, 781-800.	2.6	58

#	Article	IF	CITATIONS
55	8â€Substituted 3â€Arylcoumarins as Potent and Selective MAOâ€B Inhibitors: Synthesis, Pharmacological Evaluation, and Docking Studies. ChemMedChem, 2012, 7, 464-470.	1.6	57
56	Synthesis and Cytotoxic Profile of 3,4-Methylenedioxymethamphetamine ("Ecstasyâ€) and Its Metabolites on Undifferentiated PC12 Cells: A Putative Structureâ^'Toxicity Relationship. Chemical Research in Toxicology, 2006, 19, 1294-1304.	1.7	56
57	Alzheimer's Disease, Cholesterol, and Statins: The Junctions of Important Metabolic Pathways. Angewandte Chemie - International Edition, 2013, 52, 1110-1121.	7.2	56
58	Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Current Medicinal Chemistry, 2019, 26, 3376-3406.	1.2	56
59	Development of electrochemical methods for determination of tramadolâ€"analytical application to pharmaceutical dosage forms. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32, 975-981.	1.4	55
60	Two New Parameters Based on Distances in a Receiver Operating Characteristic Chart for the Selection of Classification Models. Journal of Chemical Information and Modeling, 2011, 51, 2746-2759.	2.5	55
61	Remarkable antioxidant properties of a series of hydroxy-3-arylcoumarins. Bioorganic and Medicinal Chemistry, 2013, 21, 3900-3906.	1.4	55
62	Voltammetric Oxidation of Drugs of Abuse I. Morphine and Metabolites. Electroanalysis, 2004, 16, 1419-1426.	1.5	54
63	Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. International Journal of Biochemistry and Cell Biology, 2018, 97, 98-103.	1.2	54
64	Multi-target spectral moment: QSAR for antifungal drugs vs. different fungi species. European Journal of Medicinal Chemistry, 2009, 44, 4051-4056.	2.6	53
65	New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies. Bioorganic and Medicinal Chemistry, 2017, 25, 1687-1695.	1.4	53
66	Powerful Protective Role of 3,4-Dihydroxyphenylethanolâ^Elenolic Acid Dialdehyde against Erythrocyte Oxidative-Induced Hemolysis. Journal of Agricultural and Food Chemistry, 2010, 58, 135-140.	2.4	52
67	Exploring nature profits: Development of novel and potent lipophilic antioxidants based on galloyl–cinnamic hybrids. European Journal of Medicinal Chemistry, 2013, 62, 289-296.	2.6	52
68	Computational chemistry approach for the early detection of drugâ€induced idiosyncratic liver toxicity. Journal of Computational Chemistry, 2008, 29, 533-549.	1.5	50
69	Combining QSAR classification models for predictive modeling of human monoamine oxidase inhibitors. European Journal of Medicinal Chemistry, 2013, 59, 75-90.	2.6	50
70	Potentiometric studies on the complexation of copper(II) by phenolic acids as discrete ligand models of humic substances. Talanta, 2005, 66, 670-673.	2.9	49
71	Desirabilityâ€based multiobjective optimization for global QSAR studies: Application to the design of novel NSAIDs with improved analgesic, antiinflammatory, and ulcerogenic profiles. Journal of Computational Chemistry, 2008, 29, 2445-2459.	1.5	49
72	Antioxidant therapy: Still in search of the â€~magic bullet'. Mitochondrion, 2013, 13, 427-435.	1.6	49

#	Article	IF	CITATIONS
73	The chemistry toolbox of multitarget-directed ligands for Alzheimer's disease. European Journal of Medicinal Chemistry, 2019, 181, 111572.	2.6	49
74	Design and discovery of tyrosinase inhibitors based on a coumarin scaffold. RSC Advances, 2015, 5, 94227-94235.	1.7	48
75	Chromone-2- and -3-carboxylic acids inhibit differently monoamine oxidases A and B. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2709-2712.	1.0	47
76	Development of a Mitochondriotropic Antioxidant Based on Caffeic Acid: Proof of Concept on Cellular and Mitochondrial Oxidative Stress Models. Journal of Medicinal Chemistry, 2017, 60, 7084-7098.	2.9	47
77	Coumarin versus Chromone Monoamine Oxidase B Inhibitors: Quo Vadis?. Journal of Medicinal Chemistry, 2017, 60, 7206-7212.	2.9	47
78	NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Medicinal Research Reviews, 2018, 38, 1159-1187.	5.0	47
79	Alzheimer's Disease and Antioxidant Therapy: How Long How Far?. Current Medicinal Chemistry, 2013, 20, 2939-2952.	1.2	47
80	Antioxidant Versus Cytotoxic Properties of Hydroxycinnamic Acid Derivatives – A New Paradigm in Phenolic Research. Archiv Der Pharmazie, 2008, 341, 164-173.	2.1	46
81	Desirability-Based Methods of Multiobjective Optimization and Ranking for Global QSAR Studies. Filtering Safe and Potent Drug Candidates from Combinatorial Libraries. ACS Combinatorial Science, 2008, 10, 897-913.	3.3	46
82	Discovery of novel A3 adenosine receptor ligands based on chromone scaffold. Biochemical Pharmacology, 2012, 84, 21-29.	2.0	46
83	Synthesis of 3-arylcoumarins via Suzuki-cross-coupling reactions of 3-chlorocoumarin. Tetrahedron Letters, 2011, 52, 1225-1227.	0.7	45
84	Chalcone-based derivatives as new scaffolds for $\langle i \rangle h \langle i \rangle A3$ adenosine receptor antagonists. Journal of Pharmacy and Pharmacology, 2013, 65, 697-703.	1.2	44
85	Discovery of two new classes of potent monoamine oxidase-B inhibitors by tricky chemistry. Chemical Communications, 2015, 51, 2832-2835.	2.2	44
86	Voltammetric Oxidation of Drugs of Abuse III. Heroin and Metabolites. Electroanalysis, 2004, 16, 1497-1502.	1.5	43
87	Electrochemical and spectroscopic characterisation of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors. Analytica Chimica Acta, 2007, 596, 231-241.	2.6	43
88	Antioxidant phenolic esters with potential anticancer activity: A Raman spectroscopy study. Journal of Raman Spectroscopy, 2008, 39, 95-107.	1.2	43
89	Fine-tuning of the hydrophobicity of caffeic acid: studies on the antimicrobial activity against Staphylococcus aureus and Escherichia coli. RSC Advances, 2015, 5, 53915-53925.	1.7	43
90	β–Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 313-319.	0.9	43

#	Article	IF	Citations
91	Voltammetric Oxidation of Drugs of Abuse II. Codeine and Metabolites. Electroanalysis, 2004, 16, 1427-1433.	1.5	42
92	3D-MEDNEs: An Alternative "in Silico―Technique for Chemical Research in Toxicology. 2. Quantitative Proteomeâ^'Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy. Chemical Research in Toxicology, 2008, 21, 619-632.	1.7	42
93	Heterocyclic Antioxidants in Nature: Coumarins. Current Organic Chemistry, 2017, 21, 311-324.	0.9	41
94	Application of a Potentiometric System with Data-Analysis Computer Programs to the Quantification of Metal-Chelating Activity of Two Natural Antioxidants: Caffeic Acid and Ferulic Acid. Helvetica Chimica Acta, 2003, 86, 3081-3087.	1.0	40
95	Natural/random protein classification models based on star network topological indices. Journal of Theoretical Biology, 2008, 254, 775-783.	0.8	39
96	Methamphetamine Changes NMDA and AMPA Glutamate Receptor Subunit Levels in the Rat Striatum and Frontal Cortex. Annals of the New York Academy of Sciences, 2008, 1139, 232-241.	1.8	39
97	Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration. Journal of NeuroImmune Pharmacology, 2017, 12, 107-119.	2.1	39
98	Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. European Journal of Medicinal Chemistry, 2017, 139, 1-11.	2.6	39
99	Repurposing ibuprofen to control Staphylococcus aureus biofilms. European Journal of Medicinal Chemistry, 2019, 166, 197-205.	2.6	39
100	Enhanced host–guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor. Talanta, 2012, 99, 288-293.	2.9	38
101	Conformational analysis of a trihydroxylated derivative of cinnamic acid—a combined Raman spectroscopy and Ab initio study. Journal of Molecular Structure, 2004, 693, 103-118.	1.8	37
102	Study of Coumarin-Resveratrol Hybrids as Potent Antioxidant Compounds. Molecules, 2015, 20, 3290-3308.	1.7	37
103	PEGylated PLGA Nanoparticles As a Smart Carrier to Increase the Cellular Uptake of a Coumarin-Based Monoamine Oxidase B Inhibitor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39557-39569.	4.0	37
104	Single or multiple injections of methamphetamine increased dopamine turnover but did not decrease tyrosine hydroxylase levels or cleave caspase-3 in caudate-putamen. Synapse, 2006, 60, 185-193.	0.6	36
105	Design, synthesis and antibacterial study of new potent and selective coumarin–chalcone derivatives for the treatment of tenacibaculosis. Bioorganic and Medicinal Chemistry, 2015, 23, 7045-7052.	1.4	36
106	Microencapsulation of caffeic acid phenethyl ester and caffeic acid phenethyl amide by inclusion in hydroxypropyl-Î ² -cyclodextrin. Food Chemistry, 2018, 254, 260-265.	4.2	35
107	Disruption of mitochondrial function as mechanism for anti-cancer activity of a novel mitochondriotropic menadione derivative. Toxicology, 2018, 393, 123-139.	2.0	35
108	Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control. International Biodeterioration and Biodegradation, 2019, 141, 71-78.	1.9	35

#	Article	IF	CITATIONS
109	Benzoic acid-derived nitrones: A new class of potential acetylcholinesterase inhibitors and neuroprotective agents. European Journal of Medicinal Chemistry, 2019, 174, 116-129.	2.6	35
110	Electrochemical sensing of the thyroid hormone thyronamine (TOAM) via molecular imprinted polymers (MIPs). Talanta, 2019, 194, 689-696.	2.9	35
111	Spectroscopic and electrochemical studies of cocaine–opioid interactions. Analytical and Bioanalytical Chemistry, 2007, 388, 1799-1808.	1.9	34
112	Unified QSAR & amp; networkâ € based computational chemistry approach to antimicrobials. II. Multiple distance and triadic census analysis of antiparasitic drugs complex networks. Journal of Computational Chemistry, 2010, 31, 164-173.	1.5	34
113	Towards the Discovery of a Novel Class of Monoamine Oxidase Inhibitors: Structure–Property–Activity and Docking Studies on Chromone Amides. ChemMedChem, 2011, 6, 628-632.	1.6	34
114	Discovery of MAO-B Inhibitors - Present Status and Future Directions Part I: Oxygen Heterocycles and Analogs. Mini-Reviews in Medicinal Chemistry, 2012, 12, 907-919.	1.1	34
115	Studies on the Food Additive Propyl Gallate: Synthesis, Structural Characterization, and Evaluation of the Antioxidant Activity. Journal of Chemical Education, 2012, 89, 130-133.	1.1	34
116	Substituted xanthones as selective and reversible monoamine oxidase A (MAO-A) inhibitors. Pharmaceutical Research, 1993, 10, 1187-1190.	1.7	33
117	Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. Free Radical Research, 2012, 46, 600-611.	1.5	33
118	Multi-target spectral moment: QSAR for antiviral drugs vs. different viral species. Analytica Chimica Acta, 2009, 651, 159-164.	2.6	32
119	Development of Blood–Brain Barrier Permeable Nitrocatechol-Based Catechol <i>>O</i> >-Methyltransferase Inhibitors with Reduced Potential for Hepatotoxicity. Journal of Medicinal Chemistry, 2016, 59, 7584-7597.	2.9	32
120	Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors. Frontiers in Chemistry, 2018, 6, 126.	1.8	32
121	Lessons from black pepper: piperine and derivatives thereof. Expert Opinion on Therapeutic Patents, 2016, 26, 245-264.	2.4	31
122	Wine and grape polyphenolsâ€"A chemical perspective. Food Research International, 2011, 44, 3134-3148.	2.9	31
123	Development of hydroxybenzoic-based platforms as a solution to deliver dietary antioxidants to mitochondria. Scientific Reports, 2017, 7, 6842.	1.6	30
124	Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: Structure-activity-toxicity, drug-likeness and efflux transport studies. European Journal of Medicinal Chemistry, 2020, 185, 111770.	2.6	30
125	Microencapsulation of herbicide MCPA with native \hat{I}^2 -cyclodextrin and its methyl and hydroxypropyl derivatives: An experimental and theoretical investigation. Journal of Molecular Structure, 2014, 1061, 76-81.	1.8	29
126	Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization. BMC Medical Genomics, 2016, 9, 12.	0.7	29

#	Article	IF	CITATIONS
127	Development of a PEGylated-Based Platform for Efficient Delivery of Dietary Antioxidants Across the Blood–Brain Barrier. Bioconjugate Chemistry, 2018, 29, 1677-1689.	1.8	29
128	Fine-tuning the neuroprotective and blood-brain barrier permeability profile of multi-target agents designed to prevent progressive mitochondrial dysfunction. European Journal of Medicinal Chemistry, 2019, 167, 525-545.	2.6	29
129	Synthesis and analysis of aminochromes by HPLC-photodiode array. Adrenochrome evaluation in rat blood. Biomedical Chromatography, 2003, 17, 6-13.	0.8	28
130	Electrochemical Analysis of Opiatesâ€"An Overview. Analytical Letters, 2004, 37, 831-844.	1.0	28
131	Synthesis, pharmacological study and docking calculations of new benzo[<i>f</i>)coumarin derivatives as dual inhibitors of enzymatic systems involved in neurodegenerative diseases. Future Medicinal Chemistry, 2014, 6, 371-383.	1.1	28
132	Furvina inhibits the 3-oxo-C12-HSL-based quorum sensing system of <i>Pseudomonas aeruginosa</i> and QS-dependent phenotypes. Biofouling, 2017, 33, 156-168.	0.8	28
133	Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery. Drug Discovery Today, 2017, 22, 994-1007.	3.2	28
134	From flamingo dance to (desirable) drug discovery: a nature-inspired approach. Drug Discovery Today, 2017, 22, 1489-1502.	3.2	28
135	Design and characterization of Nanostructured lipid carriers (NLC) and Nanostructured lipid carrier-based hydrogels containing Passiflora edulis seeds oil. International Journal of Pharmaceutics, 2021, 600, 120444.	2.6	28
136	Stochastic molecular descriptors for polymers. 4. Study of complex mixtures with topological indices of mass spectra spiral and star networks: The blood proteome case. Polymer, 2008, 49, 5575-5587.	1.8	27
137	Accelerating lead optimization of chromone carboxamide scaffold throughout microwave-assisted organic synthesis. Tetrahedron Letters, 2011, 52, 6446-6449.	0.7	27
138	In search for new chemical entities as adenosine receptor ligands: Development of agents based on benzo- \hat{l}^3 -pyrone skeleton. European Journal of Medicinal Chemistry, 2012, 54, 914-918.	2.6	27
139	Carbon nanotube \hat{l}^2 -cyclodextrin-modified electrode for quantification of cocaine in seized street samples. Ionics, 2016, 22, 2511-2518.	1.2	27
140	Oxidative Stress and Neurodegenerative Diseases: Looking for a Therapeutic Solution Inspired on Benzopyran Chemistry. Current Topics in Medicinal Chemistry, 2015, 15, 432-445.	1.0	27
141	Electrochemical oxidation of propanil and related N-substituted amides. Analytica Chimica Acta, 2001, 434, 35-41.	2.6	26
142	Phytochemical profiling as a solution to palliate disinfectant limitations. Biofouling, 2016, 32, 1007-1016.	0.8	26
143	Carbon nanotube \hat{l}^2 -cyclodextrin modified electrode as enhanced sensing platform for the determination of fungicide pyrimethanil. Food Control, 2016, 60, 7-11.	2.8	26
144	Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorganic and Medicinal Chemistry, 2017, 25, 3235-3246.	1.4	26

#	Article	IF	Citations
145	Squareâ€Wave Adsorptiveâ€Stripping Voltammetric Detection in the Quality Control of Fluoxetine. Analytical Letters, 2007, 40, 1131-1146.	1.0	25
146	Exploring cinnamic acid scaffold: development of promising neuroprotective lipophilic antioxidants. MedChemComm, 2015, 6, 1043-1053.	3.5	25
147	Long Chain Alkyl Esters of Hydroxycinnamic Acids as Promising Anticancer Agents: Selective Induction of Apoptosis in Cancer Cells. Journal of Agricultural and Food Chemistry, 2017, 65, 7228-7239.	2.4	25
148	Variable delay-to-signal: a fast paradigm for assessment of aspects of impulsivity in rats. Frontiers in Behavioral Neuroscience, 2013, 7, 154.	1.0	24
149	3â€Amidocoumarins as Potential Multifunctional Agents against Neurodegenerative Diseases. ChemMedChem, 2015, 10, 2071-2079.	1.6	24
150	Fluoxetine and Norfluoxetine Revisited: New Insights into the Electrochemical and Spectroscopic Properties. Journal of Physical Chemistry A, 2009, 113, 9934-9944.	1.1	23
151	New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: Spectroscopic, electrochemistry, and cellular studies. Free Radical Research, 2014, 48, 1473-1484.	1.5	23
152	In vitro evaluation of bisnaphthalimidopropyl derivatives loaded into pegylated nanoparticles against Leishmania infantum protozoa. International Journal of Antimicrobial Agents, 2012, 39, 424-430.	1.1	22
153	Bioactive Coumarins from Marine Sources: Origin, Structural Features and Pharmacological Properties. Current Topics in Medicinal Chemistry, 2015, 15, 1755-1766.	1.0	22
154	Premenstrual Syndrome, Inflammatory Status, and Mood States in Soccer Players. NeuroImmunoModulation, 2019, 26, 1-6.	0.9	22
155	Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Research Reviews, 2022, 79, 101658.	5.0	22
156	Phenolic esters with potential anticancer activity - the structural variable. Journal of Molecular Modeling, 2007, 13, 865-877.	0.8	21
157	Jointly Handling Potency and Toxicity of Antimicrobial Peptidomimetics by Simple Rules from Desirability Theory and Chemoinformatics. Journal of Chemical Information and Modeling, 2011, 51, 3060-3077.	2.5	21
158	Microwave-Assisted Synthesis of 5-Phenyl-2-hydroxyacetophenone Derivatives by a Green Suzuki Coupling Reaction. Journal of Chemical Education, 2015, 92, 575-578.	1.1	21
159	New insights into the oxidation pathways of apomorphine. Perkin Transactions II RSC, 2002, , 1713-1717.	1.1	20
160	Harmonization of QSAR Best Practices and Molecular Docking Provides an Efficient Virtual Screening Tool for Discovering New G-Quadruplex Ligands. Journal of Chemical Information and Modeling, 2015, 55, 2094-2110.	2.5	20
161	CompScore: Boosting Structure-Based Virtual Screening Performance by Incorporating Docking Scoring Function Components into Consensus Scoring. Journal of Chemical Information and Modeling, 2019, 59, 3655-3666.	2.5	20
162	Repurposing nitrocatechols: 5-Nitro-α-cyanocarboxamide derivatives of caffeic acid and caffeic acid phenethyl ester effectively inhibit aggregation of tau-derived hexapeptide AcPHF6. European Journal of Medicinal Chemistry, 2019, 167, 146-152.	2.6	20

#	Article	IF	CITATIONS
163	ELECTROANALYTICAL DETERMINATION OF CODEINE IN PHARMACEUTICAL PREPARATIONS. Analytical Letters, 2002, 35, 2487-2498.	1.0	19
164	Prioritizing Hits with Appropriate Tradeâ€Offs Between HIVâ€1 Reverse Transcriptase Inhibitory Efficacy and MT4 Blood Cells Toxicity Through Desirabilityâ€Based Multiobjective Optimization and Ranking. Molecular Informatics, 2010, 29, 303-321.	1.4	19
165	Biology-oriented development of novel lipophilic antioxidants with neuroprotective activity. RSC Advances, 2015, 5, 15800-15811.	1.7	19
166	Discovery of a new mitochondria permeability transition pore (mPTP) inhibitor based on gallic acid. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 567-576.	2.5	19
167	Looking for new xanthine oxidase inhibitors: 3-Phenylcoumarins versus 2-phenylbenzofurans. International Journal of Biological Macromolecules, 2020, 162, 774-780.	3.6	19
168	Identification of synthetic precursors of amphetamine-like drugs using Raman spectroscopy and ab initio calculations: \hat{l}^2 -Methyl- \hat{l}^2 -nitrostyrene derivatives. Analyst, The, 2004, 129, 1106-1117.	1.7	18
169	Computational modeling tools for the design of potent antimalarial bisbenzamidines: Overcoming the antimalarial potential of pentamidine. Bioorganic and Medicinal Chemistry, 2007, 15, 5322-5339.	1.4	18
170	Quantitative Proteome–Property Relationships (QPPRs). Part 1: Finding biomarkers of organic drugs with mean Markov connectivity indices of spiral networks of blood mass spectra. Bioorganic and Medicinal Chemistry, 2008, 16, 9684-9693.	1.4	18
171	Ligands and Therapeutic Perspectives of Adenosine A2A Receptors. Current Pharmaceutical Design, 2008, 14, 1698-1722.	0.9	18
172	Electrochemical sensor for simultaneous determination of herbicide MCPA and its metabolite 4-chloro-2-methylphenol. Application to photodegradation environmental monitoring. Environmental Science and Pollution Research, 2015, 22, 4491-4499.	2.7	18
173	Consensus strategy in genes prioritization and combined bioinformatics analysis for preeclampsia pathogenesis. BMC Medical Genomics, 2017, 10, 50.	0.7	18
174	Biofilm control by ionic liquids. Drug Discovery Today, 2021, 26, 1340-1346.	3.2	18
175	Nanotechnology and Antioxidant Therapy: An Emerging Approach for Neurodegenerative Diseases. Current Medicinal Chemistry, 2014, 21, 4311-4327.	1.2	18
176	Conformational analysis of the potential anticancer agent ethyl trihydroxycinnamate—A combined raman spectroscopy and ab initio study. Journal of Molecular Structure, 2006, 783, 122-135.	1.8	17
177	Antioxidant phenolic esters with potential anticancer activity: solution equilibria studied by Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 80-85.	1.2	17
178	Electrochemical Determination of the Herbicide Bentazone Using a Carbon Nanotube β yclodextrin Modified Electrode. Electroanalysis, 2013, 25, 2360-2366.	1.5	17
179	MAO inhibitory activity of bromo-2-phenylbenzofurans: synthesis, in vitro study, and docking calculations. MedChemComm, 2017, 8, 1788-1796.	3 . 5	17
180	Voltammetric Insights in the Transfer of Ionizable Drugs Across Biomimetic Membranes - Recent Achievements. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 514-526.	0.6	16

#	Article	IF	CITATIONS
181	Parkinson's Disease Management. Part II- Discovery of MAO-B Inhibitors Based on Nitrogen Heterocycles and Analogues. Current Topics in Medicinal Chemistry, 2012, 12, 2116-2130.	1.0	16
182	Synthesis and adenosine receptors binding affinities of a series of 3-arylcoumarins. Journal of Pharmacy and Pharmacology, 2013, 65, 1590-1597.	1.2	16
183	Liver says no: the ongoing search for safe catechol O-methyltransferase inhibitors to replace tolcapone. Drug Discovery Today, 2020, 25, 1846-1854.	3.2	16
184	Mitochondria-targeted phenolic antioxidants induce ROS-protective pathways in primary human skin fibroblasts. Free Radical Biology and Medicine, 2021, 163, 314-324.	1.3	16
185	Electrospray tandem mass spectrometry of aminochromes. Rapid Communications in Mass Spectrometry, 2001, 15, 2466-2471.	0.7	15
186	Oxidative behaviour of apomorphine and its metabolites. Bioelectrochemistry, 2002, 55, 113-114.	2.4	15
187	Influence of Hydroxypropyl- <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">β</mml:mi></mml:mrow></mml:math> -Cyclodextrin on the Photostability of Fungicide Pyrimethanil. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	15
188	A mitochondria-targeted caffeic acid derivative reverts cellular and mitochondrial defects in human skin fibroblasts from male sporadic Parkinson's disease patients. Redox Biology, 2021, 45, 102037.	3.9	15
189	A desirability-based multi objective approach for the virtual screening discovery of broad-spectrum anti-gastric cancer agents. PLoS ONE, 2018, 13, e0192176.	1.1	15
190	Simple stochastic fingerprints towards mathematical modeling in biology and medicine. 3. ocular irritability classification model. Bulletin of Mathematical Biology, 2006, 68, 1555-1572.	0.9	14
191	Structure-Based Optimization of Coumarin hA ₃ Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2020, 63, 2577-2587.	2.9	14
192	Crystal structures of three 6-substituted coumarin-3-carboxamide derivatives. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 926-932.	0.2	14
193	Interest of Antioxidant Agents in Parasitic Diseases. The Case Study of Coumarins. Current Topics in Medicinal Chemistry, 2015, 15, 850-856.	1.0	14
194	Mitochondriotropic antioxidant based on caffeic acid AntiOxCIN4 activates Nrf2-dependent antioxidant defenses and quality control mechanisms to antagonize oxidative stress-induced cell damage. Free Radical Biology and Medicine, 2022, 179, 119-132.	1.3	14
195	Electrochemical and Spectroscopic Studies of the Oxidation Mechanism of the Herbicide Propanil. Journal of Agricultural and Food Chemistry, 2003, 51, 876-879.	2.4	13
196	\hat{l}^2 -Nitrostyrene derivatives $\hat{a}\in \hat{l}$ conformational study by combined Raman spectroscopy and ab initio MO calculations. Journal of Molecular Structure, 2004, 692, 91-106.	1.8	13
197	Desirability-Based Multi-Objective QSAR in Drug Discovery. Mini-Reviews in Medicinal Chemistry, 2012, 12, 920-935.	1.1	13
198	Targeting adenosine receptors with coumarins: synthesis and binding activities of amide and carbamate derivatives. Journal of Pharmacy and Pharmacology, 2012, 65, 30-34.	1,2	13

#	Article	IF	CITATIONS
199	Host-guest complexes of phenoxy alkyl acid herbicides and cyclodextrins. MCPA and β-cyclodextrin. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 869-875.	0.7	13
200	Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Research, 2014, 13, 329-341.	0.3	13
201	Insight into the Interactions between Novel Coumarin Derivatives and Human A ₃ Adenosine Receptors. ChemMedChem, 2014, 9, 2245-2253.	1.6	13
202	Exploring coumarin potentialities: development of new enzymatic inhibitors based on the 6-methyl-3-carboxamidocoumarin scaffold. RSC Advances, 2016, 6, 49764-49768.	1.7	13
203	The Mu.Ta.Lig. Chemotheca: A Community-Populated Molecular Database for Multi-Target Ligands Identification and Compound-Repurposing. Frontiers in Chemistry, 2018, 6, 130.	1.8	13
204	Caffeic Acid Alkyl Amide Derivatives Ameliorate Oxidative Stress and Modulate ERK1/2 and AKT Signaling Pathways in a Rat Model of Diabetic Retinopathy. Chemistry and Biodiversity, 2019, 16, e1900405.	1.0	13
205	Ligand-Based Virtual Screening Using Tailored Ensembles: A Prioritization Tool for Dual A _{2A} Adenosine Receptor Antagonists / Monoamine Oxidase B Inhibitors. Current Pharmaceutical Design, 2016, 22, 3082-3096.	0.9	13
206	Coumarin-Resveratrol-Inspired Hybrids as Monoamine Oxidase B Inhibitors: 3-Phenylcoumarin versusÂtrans-6-Styrylcoumarin. Molecules, 2022, 27, 928.	1.7	13
207	Synthesis of Coumarins and Derivatives. Part 1. Biomimetic synthesis of esculetin and halogenated derivatives. Helvetica Chimica Acta, 1992, 75, 1061-1068.	1.0	12
208	Conformational behaviour of biologically active ferulic acid derivatives. Computational and Theoretical Chemistry, 2009, 913, 146-156.	1.5	12
209	Multidimensional Drug Design: Simultaneous Analysis of Binding and Relative Efficacy Profiles of N ⁶ â€substitutedâ€4′â€thioadenosines A ₃ Adenosine Receptor Agonists. Chemical Biology and Drug Design, 2010, 75, 607-618.	1.5	12
210	Affinity prediction on A3 adenosine receptor antagonists: The chemometric approach. Bioorganic and Medicinal Chemistry, 2011, 19, 6853-6859.	1.4	12
211	Classifier Ensemble Based on Feature Selection and Diversity Measures for Predicting the Affinity of A2BAdenosine Receptor Antagonists. Journal of Chemical Information and Modeling, 2013, 53, 3140-3155.	2.5	12
212	Host-Guest Interaction between Herbicide Oxadiargyl and Hydroxypropyl- \hat{l}^2 -Cyclodextrin. Scientific World Journal, The, 2013, 2013, 1-6.	0.8	12
213	Oxalate induces type II epithelial to mesenchymal transition (EMT) in inner medullary collecting duct cells (IMCD) <i>in vitro</i> and stimulate the expression of osteogenic and fibrotic markers in kidney medulla <i>in vivo</i> . Oncotarget, 2019, 10, 1102-1118.	0.8	12
214	Mitochondria-targeted anti-oxidant AntiOxCIN4 improved liver steatosis in Western diet-fed mice by preventing lipid accumulation due to upregulation of fatty acid oxidation, quality control mechanism and antioxidant defense systems. Redox Biology, 2022, 55, 102400.	3.9	12
215	Electroanalytical Determination of Oxadiazon and Characterization of Its Base-Catalyzed Ring-Opening Products. Electroanalysis, 2001, 13, 199-203.	1.5	11
216	Cytotoxic and COX-2 Inhibition Properties of Hydroxycinnamic Derivatives. Letters in Drug Design and Discovery, 2006, 3, 316-320.	0.4	11

#	Article	IF	Citations
217	Voltammetric and DFT Studies on Viloxazine: Analytical Application to Pharmaceuticals and Biological Fluids. Electroanalysis, 2008, 20, 1454-1462.	1.5	11
218	An Electrochemical Outlook on Tamoxifen Biotransformation: Current and Future Prospects. Current Drug Metabolism, 2011, 12, 372-382.	0.7	11
219	Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity. BioMed Research International, 2014, 2014, 1-10.	0.9	11
220	A comparative synthesis of 6-benzyl-2,3-dihydroimidazo[2,1-a]phthalazine and 2H-7-benzyl-3,4-dihydropyrimido[2,1-a]phthalazine. Tetrahedron Letters, 2015, 56, 828-830.	0.7	11
221	Navigating in chromone chemical space: discovery of novel and distinct A ₃ adenosine receptor ligands. RSC Advances, 2015, 5, 78572-78585.	1.7	11
222	Boosting Drug Discovery for Parkinson's: Enhancement of the Delivery of a Monoamine Oxidase-B Inhibitor by Brain-Targeted PEGylated Polycaprolactone-Based Nanoparticles. Pharmaceutics, 2019, 11, 331.	2.0	11
223	Biocide Potentiation Using Cinnamic Phytochemicals and Derivatives. Molecules, 2019, 24, 3918.	1.7	11
224	Insights into the Discovery of Novel Neuroprotective Agents: A Comparative Study between Sulfanylcinnamic Acid Derivatives and Related Phenolic Analogues. Molecules, 2019, 24, 4405.	1.7	11
225	Design, Synthesis and Biological Evaluation of New Antioxidant and Neuroprotective Multitarget Directed Ligands Able to Block Calcium Channels. Molecules, 2020, 25, 1329.	1.7	11
226	Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorganic Chemistry, 2021, 116, 105301.	2.0	11
227	Fusing Docking Scoring Functions Improves the Virtual Screening Performance for Discovering Parkinson's Disease Dual Target Ligands. Current Neuropharmacology, 2017, 15, 1107-1116.	1.4	11
228	Searching for new cytotoxic agents based on chromen-4-one and chromane-2,4-dione scaffolds. Research in Pharmaceutical Sciences, 2019, 14, 74.	0.6	11
229	Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson's disease. European Journal of Clinical Investigation, 2022, 52, .	1.7	11
230	Separation of the Diastereoisomers of Ethyl Esters of Caffeic, Ferulic, and Isoferulic Acids by Thin-Layer and High Performance Liquid Chromatography., 1994, 17, 1125-1139.		10
231	Activation of hydrocinnamic acids with pentafluorophenol versus pentafluorothiophenol: Reactivity towards hexylamine. Journal of Fluorine Chemistry, 2009, 130, 169-174.	0.9	10
232	Photostabilization of Phenoxyacetic Acid Herbicides MCPA and Mecoprop by Hydroxypropyl-Î ² -cyclodextrin. International Journal of Photoenergy, 2013, 2013, 1-8.	1.4	10
233	Long-Term Treatment with Low Doses of Methamphetamine Promotes Neuronal Differentiation and Strengthens Long-Term Potentiation of Glutamatergic Synapses onto Dentate Granule Neurons. ENeuro, 2016, 3, ENEURO.0141-16.2016.	0.9	10
234	Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chemical Biology and Drug Design, 2016, 88, 926-937.	1,5	10

#	Article	IF	CITATIONS
235	Development of piperic acid-based monoamine oxidase inhibitors: Synthesis, structural characterization and biological evaluation. Journal of Molecular Structure, 2019, 1182, 298-307.	1.8	10
236	Coordination Compounds As Multi-Delivery Systems for Osteoporosis. ACS Applied Materials & Amp; Interfaces, 2021, 13, 35469-35483.	4.0	10
237	Theoretical study of cocaine and ecgonine methyl ester in gas phase and in aqueous solution. Chemical Physics Letters, 2009, 467, 249-254.	1.2	9
238	Wine and grape polyphenols $\hat{a}\in$ " A chemical perspective [Food Research International 44 (2011) 3134-3148]. Food Research International, 2013, 54, 1843.	2.9	9
239	Development of novel adenosine receptor ligands based on the 3-amidocoumarin scaffold. Bioorganic Chemistry, 2015, 61, 1-6.	2.0	9
240	Synthesis and characterisation of new 4-oxo-N-(substituted-thiazol-2-yl)-4H-chromene-2-carboxamides as potential adenosine receptor ligands. Journal of Molecular Structure, 2015, 1089, 206-215.	1.8	9
241	Computational Drug Target Screening through Protein Interaction Profiles. Scientific Reports, 2016, 6, 36969.	1.6	9
242	Desrisking the Cytotoxicity of a Mitochondriotropic Antioxidant Based on Caffeic Acid by a PEGylated Strategy. Bioconjugate Chemistry, 2018, 29, 2723-2733.	1.8	9
243	Pharmacodynamic evaluation of novel Catechol-O-methyltransferase inhibitors. European Journal of Pharmacology, 2019, 847, 53-60.	1.7	9
244	Exploring the Multi-Target Performance of Mitochondriotropic Antioxidants against the Pivotal Alzheimer's Disease Pathophysiological Hallmarks. Molecules, 2020, 25, 276.	1.7	9
245	Fine-Tuning the Biological Profile of Multitarget Mitochondriotropic Antioxidants for Neurodegenerative Diseases. Antioxidants, 2021, 10, 329.	2.2	9
246	Mapping Chromone-3-Phenylcarboxamide Pharmacophore: <i>Quid Est Veritas</i> ?. Journal of Medicinal Chemistry, 2021, 64, 11169-11182.	2.9	9
247	Synthesis and pharmacological activities of non-flavonoid chromones: a patent review (from 2005 to) Tj ${\sf ETQq1\ 1}$	0,784314 2.4	1 rgBT /Oved
248	Synthesis of Carbocyclic Pyrimidine Nucleosides Using the <i>Mitsunobu</i> Reaction: <i>O</i> O</i"> Reaction: <i>O</i> O</i"> Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: O (i) Reaction: <a href=" mailto:ki\o<=""> (i) Reaction: <a a="" href="mailto:ki\O (i) Reaction: <a href=" mailto:ki\o<=""> (i) Reaction: <a a="" href="mailto:ki\O (i) Reaction: <a href=" mailto:ki\o<=""> (i) Reaction: <a a="" href="mailto:ki\O (i) Reaction: <a href=" mailto:ki\o<=""> (i) Reaction: <a a="" href="mailto:ki\O (i) Reaction: <a href=" mailto:ki\o<=""> (i) Reaction: <a a="" href="mailto:ki\O (i) Reaction: <a href=" mailto:ki\o<=""> (i) Reaction: <a a="" href="mailto:ki\O (i) Reaction: <a href=" mailto:ki\o<=""> (i) Reaction: <a a="" href="mailto:ki\O (i) Reaction: <a href=" mailto:ki\o<=""> (i) Reaction	1.0	8
249	Synthesis of 6-aryl/heteroaryl-4-oxo-4 H -chromene-2-carboxylic ethyl ester derivatives. Tetrahedron Letters, 2016, 57, 3006-3010.	0.7	8
250	Electrochemical Behavior of a Mitochondria-Targeted Antioxidant at an Interface between Two Immiscible Electrolyte Solutions: An Alternative Approach to Study Lipophilicity. Analytical Chemistry, 2018, 90, 7989-7996.	3.2	8
251	Ensemble-Based Modeling of Chemical Compounds with Antimalarial Activity. Current Topics in Medicinal Chemistry, 2019, 19, 957-969.	1.0	8
252	Adenosine Receptor Ligands: Coumarin–Chalcone Hybrids as Modulating Agents on the Activity of hARs. Molecules, 2020, 25, 4306.	1.7	8

#	Article	IF	Citations
253	4-Oxoquinolines and monoamine oxidase: When tautomerism matters. European Journal of Medicinal Chemistry, 2021, 213, 113183.	2.6	8
254	The crystal structures of four $\langle i \rangle N \langle i \rangle$ -(4-halophenyl)-4-oxo-4 $\langle i \rangle H \langle i \rangle$ -chromene-3-carboxamides. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 88-93.	0.2	8
255	Sulfonamide a Valid Scaffold for Antioxidant Drug Development. Mini-Reviews in Organic Chemistry, 2023, 20, 190-209.	0.6	8
256	Improved Synthesis of 3-(Aminoaryl)coumarins. Organic Preparations and Procedures International, 2012, 44, 522-526.	0.6	7
257	Recent Advances on A3 Adenosine Receptor Antagonists by QSAR Tools. Current Topics in Medicinal Chemistry, 2012, 12, 878-894.	1.0	7
258	Synthesis and NMR studies of novel chromoneâ€2â€carboxamide derivatives. Magnetic Resonance in Chemistry, 2013, 51, 251-254.	1.1	7
259	Structural characterization of some <i>N</i> -phenyl-4-oxo-4 <i>H</i> -2-chromone carboxamides. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 294-309.	0.5	7
260	Synthesis, spectroscopic characterization and X-ray structure of novel 7-methoxy-4-oxo-N-phenyl-4H-chromene-2-carboxamides. Journal of Molecular Structure, 2014, 1056-1057, 31-37.	1.8	7
261	Caffeic and Ferulic Acid Derivatives. , 2015, , 663-671.		7
262	Hydroxycinnamic acid as a novel scaffold for the development of cyclooxygenase-2 inhibitors. RSC Advances, 2015, 5, 58902-58911.	1.7	7
263	Study on the volatility of halogenated fluorenes. Chemosphere, 2016, 157, 25-32.	4.2	7
264	Molecular Encapsulation of Herbicide Terbuthylazine in Native and Modified <i> $\hat{l}^2 < li$ >-Cyclodextrin. Journal of Chemistry, 2017, 2017, 1-9.</i>	0.9	7
265	Targeting Mitochondria: The Road to Mitochondriotropic Antioxidants and Beyond., 2018,, 333-358.		7
266	Probing the Hypothesis of SAR Continuity Restoration by the Removal of Activity Cliffs Generators in QSAR. Current Pharmaceutical Design, 2016, 22, 5043-5056.	0.9	7
267	Oxidative stress and neurodegenerative diseases: looking for a therapeutic solution inspired on benzopyran chemistry. Current Topics in Medicinal Chemistry, 2015, 15, 432-45.	1.0	7
268	Bioisosteric OH- to SH-replacement changes the antioxidant profile of ferulic acid. Organic and Biomolecular Chemistry, 2019, 17, 9646-9654.	1.5	6
269	Antioxidant therapy, oxidative stress, and blood-brain barrier: The road of dietary antioxidants. , 2020, , 125-141.		6
270	Voltammetric profiling of new psychoactive substances: Piperazine derivatives. Journal of Electroanalytical Chemistry, 2021, 883, 115054.	1.9	6

#	Article	IF	CITATIONS
271	Screening of Natural Molecules as Adjuvants to Topical Antibiotics to Treat Staphylococcus aureus from Diabetic Foot Ulcer Infections. Antibiotics, 2022, 11, 620.	1.5	6
272	Design and synthesis of chromone-based monoamine oxidase B inhibitors with improved drug-like properties. European Journal of Medicinal Chemistry, 2022, 239, 114507.	2.6	6
273	Flow Injection Electrochemical Determination of Apomorphine. Analytical Letters, 2003, 36, 2199-2210.	1.0	5
274	Electrochemical Determination of Dihydrocodeine in Pharmaceuticals. Analytical Letters, 2003, 36, 577-590.	1.0	5
275	Topological structural alerts modulations of mammalian cell mutagenicity for halogenated derivatives. SAR and QSAR in Environmental Research, 2014, 25, 17-33.	1.0	5
276	Photodamage and photoprotection: toward safety and sustainability through nanotechnology solutions., 2017,, 527-565.		5
277	Coumarins and adenosine receptors: New perceptions in structure–affinity relationships. Chemical Biology and Drug Design, 2018, 91, 245-256.	1.5	5
278	Modulation of ERK1/2 and Akt Pathways Involved in the Neurotrophic Action of Caffeic Acid Alkyl Esters. Molecules, 2018, 23, 3340.	1.7	5
279	Surface Wiping Test to Study Biocide -Cinnamaldehyde Combination to Improve Efficiency in Surface Disinfection. International Journal of Molecular Sciences, 2020, 21, 7852.	1.8	5
280	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–7. Molecules, 2020, 25, 2968.	1.7	5
281	Multifunctionality and cytotoxicity of a layered coordination polymer. Dalton Transactions, 2020, 49, 3989-3998.	1.6	5
282	Joining European Scientific Forces to Face Pandemics. Trends in Microbiology, 2021, 29, 92-97.	3.5	5
283	2-(2-Methyl-2-nitrovinyl)furan but Not Furvina Interfere with Staphylococcus aureus Agr Quorum-Sensing System and Potentiate the Action of Fusidic Acid against Biofilms. International Journal of Molecular Sciences, 2021, 22, 613.	1.8	5
284	Chemoinformatics Profiling of the Chromone Nucleus as a MAO-B/A2AAR Dual Binding Scaffold. Current Neuropharmacology, 2017, 15, 1117-1135.	1.4	5
285	Isocratic HPLC Separation of Scopoletin and <i>Cis/Trans </i> Isomers of Ferulic Acid as Well as Isoscopoletin and <i>Cis/Trans </i> Isomers of Isoferulic Acid. Journal of Liquid Chromatography and Related Technologies, 1991, 14, 2307-2316.	0.9	4
286	Simultaneous Isocratic HPLC Separation of the Diastereoisomers of Caffeic, Ferulic, and Isoferulic Acids and Related Coumarins. Journal of Liquid Chromatography and Related Technologies, 1993, 16, 149-160.	0.9	4
287	4-Oxo-N-phenyl-4H-chromene-2-carboxamide and of a new polymorph of 7-methoxy-4-oxo-N-p-tolyl-4H-chromene-2-carboxamide and its hemihydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1527-1533.	0.4	4
288	New insights in the discovery of novel <i>h</i> -MAO-B inhibitors: structural characterization of a series of <i>N</i> -phenyl-4-oxo-4 <i>H</i> -chromene-3-carboxamide derivatives. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 547-554.	0.2	4

#	Article	IF	Citations
289	Discovery of the first A $<$ sub $>$ 1 $<$ /sub $>$ adenosine receptor ligand based on the chromone scaffold. RSC Advances, 2016, 6, 46972-46976.	1.7	4
290	Co-cultivation of Synechocystis salina and Pseudokirchneriella subcapitata under varying phosphorus concentrations evidences an allelopathic competition scenario. RSC Advances, 2016, 6, 56091-56100.	1.7	4
291	Progress in the development of small molecules as new human A ₃ adenosine receptor ligands based on the 3-thiophenylcoumarin core. MedChemComm, 2016, 7, 845-852.	3.5	4
292	Optimizing the Synthetic Route of Chromone-2-carboxylic Acids: A Step forward to Speed-Up the Discovery of Chromone-Based Multitarget-Directed Ligands. Molecules, 2019, 24, 4214.	1.7	4
293	The potential of phytochemical products in biofilm control. , 2020, , 273-293.		4
294	Antioxidant Therapy and Neurodegenerative Disorders: Lessons From Clinical Trials., 2021,, 97-110.		4
295	Mitochondrial Impairment by MitoBloCK-6 Inhibits Liver Cancer Cell Proliferation. Frontiers in Cell and Developmental Biology, 2021, 9, 725474.	1.8	4
296	NMR studies on the antiradical mechanism of phenolic compounds towards 2,2-diphenyl-1-picrylhydrazyl radical. Special Publication - Royal Society of Chemistry, 0, , 110-116.	0.0	4
297	Recent Advances on QSAR-Based Profiling of Agonist and Antagonist A3 Adenosine Receptor Ligands. Current Topics in Medicinal Chemistry, 2013, 13, 1048-1068.	1.0	4
298	Molecular Modeling and Experimental Evaluation of Non-Chiral Components of Bergamot Essential Oil with Inhibitory Activity against Human Monoamine Oxidases. Molecules, 2022, 27, 2467.	1.7	4
299	Evaluation of Antioxidant and Antitrypanosomal Properties of a Selected Series of Synthetic 3â€Carboxamidocoumarins. ChemistrySelect, 2016, 1, 4957-4964.	0.7	3
300	Topological sub-structural molecular design (TOPS-MODE): a useful tool to explore key fragments of human $\$$ mathbf $\{A\}_{3}$ \$ A 3 adenosine receptor ligands. Molecular Diversity, 2016, 20, 55-76.	2.1	3
301	Lipid Nanosystems and Serum Protein as Biomimetic Interfaces: Predicting the Biodistribution of a Caffeic Acid-Based Antioxidant. Nanotechnology, Science and Applications, 2021, Volume 14, 7-27.	4.6	3
302	Chemical and biological analysis of 4-acyloxy-3-nitrocoumarins as trypanocidal agents. Arabian Journal of Chemistry, 2021, 14, 102975.	2.3	3
303	Cytotoxicity and Mitochondrial Effects of Phenolic and Quinone-Based Mitochondria-Targeted and Untargeted Antioxidants on Human Neuronal and Hepatic Cell Lines: A Comparative Analysis. Biomolecules, 2021, 11, 1605.	1.8	3
304	Voltammetric quantification of fluoxetine: Application to quality control and quality assurance processes. Journal of Food and Drug Analysis, 2006, 14, .	0.9	3
305	Antioxidants and Stroke: Success and Pitfalls. , 2012, , 117-143.		2
306	A comparison of the structures of some 2- and 3-substituted chromone derivatives: a structural study on the importance of the secondary carboxamide backbone for the inhibitory activity of MAO-B. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1270-1277.	0.2	2

#	Article	IF	CITATIONS
307	Structural elucidation of a series of 6â€methylâ€3â€carboxamidocoumarins. Magnetic Resonance in Chemistry, 2017, 55, 373-378.	1.1	2
308	Chemistry and Pharmacology of Modulators of Oxidative Stress. Current Medicinal Chemistry, 2020, 27, 2038-2039.	1.2	2
309	Bridging the Gap Between Nature and Antioxidant Setbacks: Delivering Caffeic Acid to Mitochondria. Methods in Molecular Biology, 2015, 1265, 73-83.	0.4	2
310	6-Methyl-2-oxo- <i>N</i> -(quinolin-6-yl)-2 <i>H</i> -chromene-3-carboxamide: crystal structure and Hirshfeld surface analysis. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1121-1125.	0.2	2
311	The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-dimethylanilino)- <i>N</i> -(3,4-dimethylanilino)- <i>N</i> -(3,4-dimethylphenyl)quinoline-3-carboxamide. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 201-207.	0.2	2
312	Receptores A3 da adenosina: uma nova abordagem terapêutica no câncer. Quimica Nova, 2011, 34, 1417-1424.	0.3	2
313	Desirability-based Multi-criteria Virtual Screening of Selective Antimicrobial Cyclic \hat{l}^2 -Hairpin Cationic Peptidomimetics. Current Pharmaceutical Design, 2013, 19, 2148-2163.	0.9	2
314	QSAR and Complex Network Recognition of miRNAs in Stem Cells. Current Bioinformatics, 2013, 8, 438-451.	0.7	2
315	Bridging Chemical and Biological Space: QSAR Probing Using 3D Molecular Descriptors. , 2012, , 119-193.		2
316	Computer-aided Design of Coumarins for Neurodegenerative Diseases: Trends of the Last Decade. Current Topics in Medicinal Chemistry, 2021, 21, 2245-2257.	1.0	2
317	Crystal structures of three 3,4,5-trimethoxybenzamide-based derivatives. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 675-682.	0.2	2
318	Effect of a Novel Hydroxybenzoic Acid Based Mitochondria Directed Antioxidant Molecule on Bovine Sperm Function and Embryo Production. Animals, 2022, 12, 804.	1.0	2
319	In Vitro Effects of Mitochondria-Targeted Antioxidants in a Small-Cell Carcinoma of the Ovary of Hypercalcemic Type and in Type 1 and Type 2 Endometrial Cancer. Biomedicines, 2022, 10, 800.	1.4	2
320	2,2,4,4-Tetra-tert-butyl-1,3,5,2,4-benzotrioxadisilepine-7-carbaldehyde. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o95-o97.	0.4	1
321	Vibrational Spectroscopy Studies on Biologically Relevant Molecules: From Anticancer Agents to Drugs of Abuse. ACS Symposium Series, 2007, , 338-363.	0.5	1
322	Hydration Structure of Cocaine and its Metabolites: A Molecular Dynamics Study. Journal of Solution Chemistry, 2011, 40, 656-679.	0.6	1
323	Synthesis, crystal structure and spectral properties of 6-bromo-N-(cyclohex-1-en-1-ylmethyl)-4-oxo-4H-chromene-2-carboxamide. Journal of Molecular Structure, 2013, 1049, 125-131.	1.8	1
324	Two polymorphs of N-(2-methoxyphenyl)-4-oxo-4H-chromone-3-carboxamide. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 927-933.	0.4	1

#	Article	IF	CITATIONS
325	Crystal structures of ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate and ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 8-13.	0.2	1
326	Structure of 7-hydroxy-3-(2-methoxyphenyl)-2-trifluoromethyl-4 <i>H</i> -chromen-4-one. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1130-1134.	0.2	1
327	Structural elucidation of a series of benzamide derivatives. Magnetic Resonance in Chemistry, 2018, 56, 216-223.	1.1	1
328	Bridging the Gap Between Nature and Antioxidant Setbacks: Delivering to. Methods in Molecular Biology, 2021, 2275, 161-172.	0.4	1
329	Mesenchymal Stem Cell Exosomes transfer microRNA and protect injured tubular epithelial cells FASEB Journal, 2015, 29, 670.8.	0.2	1
330	Synthesis and study of the trypanocidal activity of catechol-containing 3-arylcoumarins, inclusion in \hat{l}^2 -cyclodextrin complexes and combination with benznidazole. Arabian Journal of Chemistry, 2022, 15, 103641.	2.3	1
331	Bridging the gap between nature and antioxidant setbacks: Delivering hydroxybenzoic acids to mitochondria. Free Radical Biology and Medicine, 2012, 53, S102.	1.3	0
332	Editorial (Thematic Issue: Synthesis, Evaluation and Pharmacological Applications of Antioxidants-) Tj ETQq0 0 0 rg	BT_/Overlo	ogk 10 Tf 50
333	Editorial (Thematic Issue: Synthesis, Evaluation and Pharmacological Applications of Antioxidants-) Tj ETQq1 1 0.73	84314 rgB 1.2	T ₀ /Overlock
334	Editorial (Thematic Issue: Oxidative Stress as a Pharmacological Target for Medicinal Chemistry:) Tj ETQq0 0 0 rgB Chemistry, 2014, 14, 2461-2461.	Γ /Overloc 1.0	k 10 Tf 50 3 O
335	Crystal structures of two 6-(2-hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-ones. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 766-771.	0.2	O
336	Editorial (Thematic Issue: Oxidative Stress as a Pharmacological Target for Medicinal Chemistry:) Tj ETQq0 0 0 rgB Chemistry, 2015, 15, 84-84.	Γ /Overloc 1.0	k 10 Tf 50 3 O
337	Editorial (Thematic Issue: Oxidative Stress as a Pharmacological Target for Medicinal Chemistry:) Tj ETQq1 1 0.784 Chemistry, 2015, 15, 414-414.	314 rgBT 1.0	/Overlock <mark>1</mark> (0
338	Editorial (Thematic Issue: Oxidative Stress as a Pharmacological Target for Medicinal Chemistry:) Tj ETQq0 0 0 rgB Chemistry, 2015, 15, 821-821.	Γ/Overloc 1.0	k 10 Tf 50 2 0
339	Induction of apoptosis in cancer cells by p-coumarate ester derivatives. European Journal of Cancer, 2016, 61, S135.	1.3	0
340	Polymorphism in the structure of N-(5-methylthiazol-2-yl)-4-oxo-4H-chromene-3-carboxamide. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1154-1161.	0.2	0
341	FP414EXOSOMES FROM HIGH GLUCOSE-TREATED MESANGIALCELLSACTIVATE INTRACELLULAR RENIN ANGIOTENSIN SYSTEM IN HEALTHMESANGIAL CELLS. Nephrology Dialysis Transplantation, 2018, 33, i175-i175.	0.4	0
342	Study of a Selected Series of 3―and 4â€Arylcoumarins as Antifungal Agents against Dermatophytic Fungi: T. rubrum and T. mentagrophytes. ChemistrySelect, 2021, 6, 9981-9989.	0.7	0

#	Article	IF	CITATIONS
343	Exploring Nitrostyrene as a Scaffold for a New Class a of Monoamine Oxidase Inhibitors. Letters in Drug Design and Discovery, 2012, 9, 958-961.	0.4	0
344	Editorial (Hot Topic: Electrochemistry and Antioxidants). Combinatorial Chemistry and High Throughput Screening, 2013, 16, 83-83.	0.6	0
345	Stem Cells Improved Renovascular Hypertension Independently of the Change of Renal Water and Sodium Transporters. FASEB Journal, 2015, 29, 960.17.	0.2	O
346	Crystal structures of five 6-mercaptopurine derivatives. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 307-313.	0.2	0
347	Drug (re-)design guided by biophysical characterization of interactions with biomimetic membranes. , 0, , .		O
348	Unexpected conversion of 4-oxo-4H-chromene-2-carboxylic acid to 2-(1,3-benzothiazol-2-yl)-4H-chromen-4-one and spiro[1,4-benzothiazine-2,2'-chromene]-3,4'(3'H,4H)-dione. Chemistry of Heterocyclic Compounds, 2022, 58, 68-72.	0.6	0