
Shigeo Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7683788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Involvement of Interleukin-8, Vascular Endothelial Growth Factor, and Basic Fibroblast Growth Factor in Tumor Necrosis Factor Alpha-Dependent Angiogenesis. Molecular and Cellular Biology, 1997, 17, 4015-4023.	2.3	622
2	Induction of Vascular Endothelial Growth Factor by Tumor Necrosis Factor α in Human Glioma Cells. Journal of Biological Chemistry, 1996, 271, 28220-28228.	3.4	403
3	Expression profiling of the developing and mature Nrl â^'/â^' mouse retina: identification of retinal disease candidates and transcriptional regulatory targets of Nrl. Human Molecular Genetics, 2004, 13, 1487-1503.	2.9	157
4	Age-Related Macular Degeneration: A High-Resolution Genome Scan for Susceptibility Loci in a Population Enriched for Late-Stage Disease. American Journal of Human Genetics, 2004, 74, 482-494.	6.2	157
5	ROCK-Isoform-Specific Polarization of Macrophages Associated with Age-Related Macular Degeneration. Cell Reports, 2015, 10, 1173-1186.	6.4	154
6	Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. Journal of Leukocyte Biology, 2003, 73, 137-144.	3.3	151
7	Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nature Genetics, 2011, 43, 1001-1004.	21.4	135
8	A Chloroplast Protein Homologous to the Eubacterial Topological Specificity Factor MinE Plays a Role in Chloroplast Division. Plant Physiology, 2001, 127, 1644-1655.	4.8	124
9	Induction of IL-8, MCP-1, and bFGF by TNF-α in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2004, 242, 409-413.	1.9	123
10	The Role of Inflammation in Age-Related Macular Degeneration. International Journal of Biological Sciences, 2020, 16, 2989-3001.	6.4	113
11	Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. Journal of Cell Science, 2004, 117, 2399-2410.	2.0	89
12	Microarray analysis of gene expression in the aging human retina. Investigative Ophthalmology and Visual Science, 2002, 43, 2554-60.	3.3	79
13	IL-23–Independent Induction of IL-17 from γÎ⊤ Cells and Innate Lymphoid Cells Promotes Experimental Intraocular Neovascularization. Journal of Immunology, 2013, 190, 1778-1787.	0.8	78
14	Different distributions of M1 and M2 macrophages in a mouse model of laser-induced choroidal neovascularization. Molecular Medicine Reports, 2017, 15, 3949-3956.	2.4	67
15	Gene Expression Profile of Hyperoxic and Hypoxic Retinas in a Mouse Model of Oxygen-Induced Retinopathy. , 2010, 51, 4307.		66
16	Microarray Analysis of Gene Expression in Fibrovascular Membranes Excised From Patients With Proliferative Diabetic Retinopathy. Investigative Ophthalmology and Visual Science, 2015, 56, 932-946.	3.3	64
17	Plant Cells Without Detectable Plastids are Generated in the crumpled leaf Mutant of Arabidopsis thaliana. Plant and Cell Physiology, 2009, 50, 956-969.	3.1	63
18	Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB Journal, 2014, 28, 131-142.	0.5	62

#	Article	IF	CITATIONS
19	Periostin Promotes Scar Formation through the Interaction between Pericytes and Infiltrating Monocytes/Macrophages after Spinal Cord Injury. American Journal of Pathology, 2017, 187, 639-653.	3.8	61
20	Intravitreal Anti-VEGF Therapy Blocks Inflammatory Cell Infiltration and Re-Entry into the Circulation in Retinal Angiogenesis. , 2012, 53, 4323.		60
21	M2 Macrophages Enhance Pathological Neovascularization in the Mouse Model of Oxygen-Induced Retinopathy. , 2015, 56, 4767.		60
22	Vascular Normalization by ROCK Inhibitor: Therapeutic Potential of Ripasudil (K-115) Eye Drop in Retinal Angiogenesis and Hypoxia. , 2016, 57, 2264.		55
23	The Assembly of the FtsZ Ring at the Mid-Chloroplast Division Site Depends on a Balance Between the Activities of AtMinE1 and ARC11/AtMinD1. Plant and Cell Physiology, 2008, 49, 345-361.	3.1	54
24	Increased vitreous concentrations of MCP-1 and IL-6 after vitrectomy in patients with proliferative diabetic retinopathy: possible association with postoperative macular oedema. British Journal of Ophthalmology, 2015, 99, 960-966.	3.9	51
25	Hyphema is a risk factor for failure of trabeculectomy in neovascular glaucoma: a retrospective analysis. BMC Ophthalmology, 2014, 14, 55.	1.4	50
26	Increased Expression of Periostin in Vitreous and Fibrovascular Membranes Obtained from Patients with Proliferative Diabetic Retinopathy. , 2011, 52, 5670.		49
27	A Key Role for ROCK in TNF-α–Mediated Diabetic Microvascular Damage. , 2013, 54, 2373.		48
28	Two brothers with gelatinous drop-like dystrophy at different stages of the disease: role of mutational analysis. American Journal of Ophthalmology, 2002, 133, 830-832.	3.3	44
29	DNA Methylomes Reveal Biological Networks Involved in Human Eye Development, Functions and Associated Disorders. Scientific Reports, 2017, 7, 11762.	3.3	44
30	Involvement of Macrophage Chemotactic Protein-1 and Interleukin-1β During Inflammatory but Not Basic Fibroblast Growth Factor–Dependent Neovascularization in the Mouse Cornea. Laboratory Investigation, 2003, 83, 927-938.	3.7	42
31	TEM7 (PLXDC1) in Neovascular Endothelial Cells of Fibrovascular Membranes from Patients with Proliferative Diabetic Retinopathy. , 2008, 49, 3151.		42
32	Low-frequency coding variants in <i>CETP</i> and <i>CFB</i> are associated with susceptibility of exudative age-related macular degeneration in the Japanese population. Human Molecular Genetics, 2016, 25, ddw335.	2.9	42
33	Mouse eye gene microarrays for investigating ocular development and disease. Vision Research, 2002, 42, 463-470.	1.4	39
34	Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Therapy, 2015, 22, 127-137.	4.5	39
35	Bone marrow-derived monocyte lineage cells recruited by MIP-1β promote physiological revascularization in mouse model of oxygen-induced retinopathy. Laboratory Investigation, 2012, 92, 91-101.	3.7	38
36	Overexpression of CD163 in vitreous and fibrovascular membranes of patients with proliferative diabetic retinopathy: possible involvement of periostin. British Journal of Ophthalmology, 2015, 99, 451-456.	3.9	38

#	Article	IF	CITATIONS
37	Optical coherence tomography angiography of the macular microvasculature changes in retinitis pigmentosa. Acta Ophthalmologica, 2018, 96, e59-e67.	1.1	38
38	Increased expression of M-CSF and IL-13 in vitreous of patients with proliferative diabetic retinopathy: implications for M2 macrophage-involving fibrovascular membrane formation. British Journal of Ophthalmology, 2015, 99, 629-634.	3.9	36
39	Optical Coherence Tomography Angiography Reveals Spatial Bias of Macular Capillary Dropout in Diabetic Retinopathy. , 2017, 58, 4889.		36
40	Risk Factors for Posterior Subcapsular Cataract in Retinitis Pigmentosa. , 2017, 58, 2534.		35
41	Antiangiogenic Shift in Vitreous after Vitrectomy in Patients with Proliferative Diabetic Retinopathy. , 2012, 53, 6997.		34
42	Full thickness macular hole case after intravitreal aflibercept treatment. BMC Ophthalmology, 2015, 15, 30.	1.4	32
43	Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy. Scientific Reports, 2016, 6, 28140.	3.3	32
44	ldentifying circRNA-associated-ceRNA networks in retinal neovascularization in mice. International Journal of Medical Sciences, 2019, 16, 1356-1365.	2.5	32
45	Chemical induction of rapid and reversible plastid filamentation in Arabidopsis thaliana roots. Physiologia Plantarum, 2010, 139, 144-158.	5.2	31
46	The Role of NF-κB in Retinal Neovascularization in the Rat: Possible Involvement of Cytokine-induced Neutrophil Chemoattractant (CINC), a Member of the Interleukin-8 Family. Journal of Histochemistry and Cytochemistry, 1998, 46, 429-436.	2.5	30
47	Comparison of Gene Expression Profile of Epiretinal Membranes Obtained from Eyes with Proliferative Vitreoretinopathy to That of Secondary Epiretinal Membranes. PLoS ONE, 2013, 8, e54191.	2.5	30
48	Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models. JCI Insight, 2018, 3, .	5.0	28
49	Tenascin-C secreted by transdifferentiated retinal pigment epithelial cells promotes choroidal neovascularization via integrin αV. Laboratory Investigation, 2016, 96, 1178-1188.	3.7	27
50	The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis. PLoS ONE, 2018, 13, e0192380.	2.5	27
51	Induction of macrophage inflammatory protein-1alpha and vascular endothelial growth factor during inflammatory neovascularization in the mouse cornea. Angiogenesis, 1999, 3, 327-334.	7.2	26
52	INTERNAL LIMITING MEMBRANE PEELING–DEPENDENT RETINAL STRUCTURAL CHANGES AFTER VITRECTOMY IN RHEGMATOGENOUS RETINAL DETACHMENT. Retina, 2018, 38, 471-479.	1.7	26
53	MUTYH promotes oxidative microglial activation and inherited retinal degeneration. JCI Insight, 2016, 1, e87781.	5.0	26
54	ALTERED VASCULAR MICROENVIRONMENT BY BEVACIZUMAB IN DIABETIC FIBROVASCULAR MEMBRANE. Retina, 2013, 33, 957-963.	1.7	25

#	Article	IF	CITATIONS
55	Discovery of a Cynomolgus Monkey Family With Retinitis Pigmentosa. , 2018, 59, 826.		25
56	Lattice corneal dystrophy type I without typical lattice lines: role of mutational analysis. American Journal of Ophthalmology, 2004, 137, 586-588.	3.3	24
57	Novel mutation in ABCC6 gene in a Japanese pedigree with pseudoxanthoma elasticum and retinitis pigmentosa. Eye, 2005, 19, 215-217.	2.1	24
58	Decrease in the number of microaneurysms in diabetic macular edema after anti-vascular endothelial growth factor therapy: implications for indocyanine green angiography-guided detection of refractory microaneurysms. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 735-741.	1.9	24
59	Novel mutation in FZD4 gene in a Japanese pedigree with familial exudative vitreoretinopathy. American Journal of Ophthalmology, 2004, 138, 670-671.	3.3	23
60	Diverse roles of macrophages in intraocular neovascular diseases: a review. International Journal of Ophthalmology, 2017, 10, 1902-1908.	1.1	23
61	Review of clinical studies and recommendation for a therapeutic flow chart for diabetic macular edema. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 815-836.	1.9	23
62	Apoptosis in perforated cornea of a patient with graft-versus-host disease. Canadian Journal of Ophthalmology, 2006, 41, 472-475.	0.7	22
63	Differential association of elevated inflammatory cytokines with postoperative fibrous proliferation and neovascularization after unsuccessful vitrectomy in eyes with proliferative diabetic retinopathy. Clinical Ophthalmology, 2017, Volume 11, 1697-1705.	1.8	22
64	One-Year Outcomes following Intravitreal Aflibercept for Polypoidal Choroidal Vasculopathy in Japanese Patients: The APOLLO Study. Ophthalmologica, 2017, 238, 163-171.	1.9	21
65	Applications of CRISPR/Cas9 in retinal degenerative diseases. International Journal of Ophthalmology, 2017, 10, 646-651.	1.1	21
66	Relations Among Foveal Blood Flow, Retinal-Choroidal Structure, and Visual Function in Retinitis Pigmentosa. , 2018, 59, 1134.		21
67	Involvement of Periostin in Regression of Hyaloidvascular System during Ocular Development. , 2012, 53, 6495.		20
68	Association Between Aqueous Flare and Epiretinal Membrane in Retinitis Pigmentosa. , 2016, 57, 4282.		20
69	Rho-Kinase/ROCK as a Potential Drug Target for Vitreoretinal Diseases. Journal of Ophthalmology, 2017, 2017, 1-8.	1.3	20
70	Periostin Promotes Fibroblast Migration and Inhibits Muscle Repair After Skeletal Muscle Injury. Journal of Bone and Joint Surgery - Series A, 2018, 100, e108.	3.0	20
71	Reduced concentrations of angiogenesis-related factors in vitreous after vitrectomy in patients with proliferative diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2010, 248, 799-804.	1.9	19
72	Gene expression profile of fibrovascular membranes from patients with proliferative diabetic retinopathy. British Journal of Ophthalmology, 2010, 94, 795-801.	3.9	19

#	Article	IF	CITATIONS
73	Therapeutic Effect of Novel Single-Stranded RNAi Agent Targeting Periostin in Eyes with Retinal Neovascularization. Molecular Therapy - Nucleic Acids, 2017, 6, 279-289.	5.1	19
74	Different roles played by periostin splice variants in retinal neovascularization. Experimental Eye Research, 2016, 153, 133-140.	2.6	18
75	Microaneurysm Detection in Diabetic Retinopathy Using OCT Angiography May Depend on Intramicroaneurysmal Turbulence. Ophthalmology Retina, 2018, 2, 1171-1173.	2.4	18
76	Spontaneous remission of acute zonal occult outer retinopathy: follow-up using adaptive optics scanning laser ophthalmoscopy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 839-843.	1.9	17
77	Comparison of the Effectiveness of Intravitreal Ranibizumab for Diabetic Macular Edema in Vitrectomized and Nonvitrectomized Eyes. Ophthalmologica, 2016, 236, 67-73.	1.9	17
78	Imaging of Retinal Vascular Layers: Adaptive Optics Scanning Laser Ophthalmoscopy Versus Optical Coherence Tomography Angiography. Translational Vision Science and Technology, 2017, 6, 2.	2.2	17
79	Visual Outcomes Based on Early Response to Anti-Vascular Endothelial Growth Factor Treatment for Diabetic Macular Edema. Ophthalmologica, 2018, 239, 94-102.	1.9	17
80	Câ€Reactive protein and progression of vision loss in retinitis pigmentosa. Acta Ophthalmologica, 2018, 96, e174-e179.	1.1	17
81	Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Molecular Vision, 2016, 22, 436-45.	1.1	17
82	Familial Cases with Age-Related Macular Degeneration. Japanese Journal of Ophthalmology, 2000, 44, 290-295.	1.9	16
83	Distinct Profiles of Soluble Cytokine Receptors Between B-Cell Vitreoretinal Lymphoma and Uveitis. , 2015, 56, 7516.		16
84	High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates. Scientific Reports, 2016, 6, 33574.	3.3	16
85	Periostin in vitreoretinal diseases. Cellular and Molecular Life Sciences, 2017, 74, 4329-4337.	5.4	16
86	Assessment of Central Visual Function in Patients with Retinitis Pigmentosa. Scientific Reports, 2018, 8, 8070.	3.3	16
87	Novel triple missense mutations of GUCY2D gene in Japanese family with cone-rod dystrophy: possible use of genotyping microarray. Molecular Vision, 2006, 12, 1558-64.	1.1	16
88	Serous retinal detachment in an elderly patient with Philadelphia-chromosome-positive acute lymphoblastic leukemia. American Journal of Ophthalmology, 2005, 139, 348-349.	3.3	15
89	The <i>Arabidopsis minD</i> mutation causes aberrant FtsZ1 ring placement and moderate heterogeneity of chloroplasts in the leaf epidermis. Plant Signaling and Behavior, 2017, 12, e1343776.	2.4	15
90	Five-year treatment outcomes following intravitreal ranibizumab injections for neovascular age-related macular degeneration in Japanese patients. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1411-1418.	1.9	15

#	Article	IF	CITATIONS
91	Periostin and tenascin-C interaction promotes angiogenesis in ischemic proliferative retinopathy. Scientific Reports, 2020, 10, 9299.	3.3	15
92	Improved Brilliant Blue G Staining of the Internal Limiting Membrane with Sharp Cut Filters of a Novel Viewing Filter System. Ophthalmologica, 2013, 230, 27-32.	1.9	14
93	Microarray Analysis of Long Non-Coding RNAs and Messenger RNAs in a Mouse Model of Oxygen-Induced Retinopathy. International Journal of Medical Sciences, 2019, 16, 537-547.	2.5	14
94	Small RNA Sequencing Reveals Transfer RNA-derived Small RNA Expression Profiles in Retinal Neovascularization. International Journal of Medical Sciences, 2020, 17, 1713-1722.	2.5	13
95	Quantifying metamorphopsia with M-CHARTS in patients with idiopathic macular hole. Clinical Ophthalmology, 2017, Volume 11, 1719-1726.	1.8	12
96	Lack of Lymphatics and Lymph Node–Mediated Immunity in Choroidal Neovascularization. , 2013, 54, 3830.		11
97	Altered Long Non-coding RNAs Involved in Immunological Regulation and Associated with Choroidal Neovascularization in Mice. International Journal of Medical Sciences, 2020, 17, 292-301.	2.5	11
98	Investigation of circRNA Expression Profiles and Analysis of circRNA-miRNA-mRNA Networks in an Animal (Mouse) Model of Age-Related Macular Degeneration. Current Eye Research, 2020, 45, 1173-1180.	1.5	11
99	Metabolomics Analyses of Mouse Retinas in Oxygen-Induced Retinopathy. , 2021, 62, 9.		11
100	An Analysis of BIGH3 Mutations in Patients with Corneal Dystrophies in the Kyushu District of Japan. Japanese Journal of Ophthalmology, 2002, 46, 469-471.	1.9	10
101	De novo insG619 mutation in PAX2 gene in a Japanese patient with papillorenal syndrome. American Journal of Ophthalmology, 2005, 139, 733-735.	3.3	10
102	Wide-Field Laser Ophthalmoscopy for Mice: A Novel Evaluation System for Retinal/Choroidal Angiogenesis in Mice. , 2013, 54, 5288.		10
103	Increased expression of periostin and tenascin-C in eyes with neovascular glaucoma secondary to PDR. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 621-628.	1.9	10
104	Gene Expression Analysis of the Irrigation Solution Samples Collected during Vitrectomy for Idiopathic Epiretinal Membrane. PLoS ONE, 2016, 11, e0164355.	2.5	10
105	Stimulation of cell-surface urokinase-type plasminogen activator activity and cell migration in vascular endothelial cells by a novel hexapeptide analogue of neurotensin. FEBS Letters, 1997, 418, 341-345.	2.8	9
106	Role of interferons in diabetic retinopathy. World Journal of Diabetes, 2021, 12, 939-953.	3.5	9
107	INCOMPLETE REPAIR OF RETINAL STRUCTURE AFTER VITRECTOMY WITH INTERNAL LIMITING MEMBRANE PEELING. Retina, 2017, 37, 1523-1528.	1.7	8
108	Genome-wide association study suggests four variants influencing outcomes with ranibizumab therapy in exudative age-related macular degeneration. Journal of Human Genetics, 2018, 63, 1083-1091.	2.3	8

#	Article	IF	CITATIONS
109	Altered Fecal Microbiome and Metabolome in a Mouse Model of Choroidal Neovascularization. Frontiers in Microbiology, 2021, 12, 738796.	3.5	8
110	<i>TNFRSF10A</i> downregulation induces retinal pigment epithelium degeneration during the pathogenesis of age-related macular degeneration and central serous chorioretinopathy. Human Molecular Genetics, 2022, 31, 2194-2206.	2.9	8
111	Identification of altered microRNAs in retinas of mice with oxygen-induced retinopathy. International Journal of Ophthalmology, 2019, 12, 739-745.	1.1	7
112	Papillorenal syndrome in a family with unusual complications. British Journal of Ophthalmology, 2013, 97, 945-946.	3.9	6
113	QUANTITATIVE ANALYSIS OF VITREOUS AND PLASMA CONCENTRATIONS OF BRILLIANT BLUE G AFTER USE AS A SURGICAL ADJUVANT IN CHROMOVITRECTOMY. Retina, 2013, 33, 2170-2174.	1.7	6
114	Altered Expressions of Transfer RNA-Derived Small RNAs and microRNAs in the Vitreous Humor of Proliferative Diabetic Retinopathy. Frontiers in Endocrinology, 0, 13, .	3.5	6
115	Rapid genotyping for most common TGFBI mutations with real-time polymerase chain reaction. Human Genetics, 2005, 116, 518-524.	3.8	5
116	Development and preclinical evaluation of a new viewing filter system to control reflection and enhance dye staining during vitrectomy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 441-451.	1.9	5
117	Contribution of the clock gene DEC2 to VEGF mRNA upregulation by modulation of HIF1α protein levels in hypoxic MIO-M1 cells, a human cell line of retinal glial (Müller) cells. Japanese Journal of Ophthalmology, 2018, 62, 677-685.	1.9	5
118	Changes in metamorphopsia after the treat-and-extend regimen of anti-VEGF therapy for macular edema associated with branch retinal vein occlusion. PLoS ONE, 2020, 15, e0241343.	2.5	5
119	Trends in the Prevalence and Progression of Diabetic Retinopathy Associated with Hyperglycemic Disorders during Pregnancy in Japan. Journal of Clinical Medicine, 2022, 11, 165.	2.4	5
120	Bilateral epiretinal membranes in nevoid basal cell carcinoma syndrome. Acta Ophthalmologica, 2004, 82, 488-490.	0.3	4
121	Prognostic DNA testing and counselling for dominant optic atrophy due to a novel OPA1 mutation. Canadian Journal of Ophthalmology, 2006, 41, 614-616.	0.7	4
122	CLINICAL EVALUATION AND FEASIBILITY OF CHANGING INTRAOPERATIVE VISIBILITY WITH A NOVEL VIEWING FILTER SYSTEM FOR HUMAN EYE. Retina, 2013, 33, 1923-1930.	1.7	4
123	Chromovitrectomy and Vital Dyes. Developments in Ophthalmology, 2014, 54, 120-125.	0.1	4
124	Correlation between improvement in visual acuity and QOL after Ranibizumab treatment for age-related macular degeneration patients: QUATRO study. BMC Ophthalmology, 2021, 21, 58.	1.4	4
125	Attenuation of periostin in retinal Müller glia by TNF-α and IFN-γ. International Journal of Ophthalmology, 2019, 12, 212-218.	1.1	4
126	Rapid detection of SAG 926delA mutation using real-time polymerase chain reaction. Molecular Vision, 2006, 12, 1552-7.	1.1	4

#	Article	IF	CITATIONS
127	Differential improvement of vertical and horizontal metamorphopsia scores after epiretinal membrane vitrectomy with ILM peeling. Acta Ophthalmologica, 2015, 93, e681-e682.	1.1	3
128	Periostin in Eye Diseases. Advances in Experimental Medicine and Biology, 2019, 1132, 113-124.	1.6	3
129	Reduced vitreal concentration of periostin after vitrectomy in patients with proliferative diabetic retinopathy. Acta Ophthalmologica, 2016, 94, e81-e82.	1.1	2
130	Interleukin-19 Promotes Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. , 2022, 63, 9.		2
131	Reiter's syndrome in Japan. Japanese Journal of Clinical Immunology, 1986, 9, 51-57.	0.0	1
132	Transconjunctival Observation and Suturing Technique for Invisible and Insufficiently Closed Sclerotomy Wounds Using an Inverted Surgical Contact Lens in Transconjunctival Microincision Vitrectomy Surgery. Retina, 2013, 33, 1270-1272.	1.7	0
133	ComparaciÃ ³ n de la efectividad de ranibizumab intravÃŧreo para el tratamiento del edema macular diab©tico en ojos vitrectomizados y no vitrectomizados. Ophthalmologica, 2017, 238, 21-27.	1.9	0
134	An Overview of Diabetic Retinopathy. , 2018, , 139-154.		0
135	Safety and efficacy of brilliant blue g250 (BBG) for lens capsular staining: a phase III physician-initiated multicenter clinical trial. Japanese Journal of Ophthalmology, 2020, 64, 455-461.	1.9	О