List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7683669/publications.pdf Version: 2024-02-01

XIIANMEI FAN

#	Article	IF	CITATIONS
1	Comment on â€~Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau' by Zhao et al. (2019) Geomorphology 338, 27–42. Geomorphology, 2022, 402, 106963.	1.1	12
2	Changes in debris-flow susceptibility after the Wenchuan earthquake revealed by meteorological and hydro-meteorological thresholds. Catena, 2022, 210, 105929.	2.2	9
3	Surface temperature controls the pattern of post-earthquake landslide activity. Scientific Reports, 2022, 12, 988.	1.6	24
4	Multi-Temporal Landslide Inventory-Based Statistical Susceptibility Modeling Associated With the 2017 Mw 6.5 Jiuzhaigou Earthquake, Sichuan, China. Frontiers in Environmental Science, 2022, 10, .	1.5	4
5	The Fate of Sediment After a Large Earthquake. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	14
6	MFFENet and ADANet: a robust deep transfer learning method and its application in high precision and fast cross-scene recognition of earthquake-induced landslides. Landslides, 2022, 19, 1617-1647.	2.7	19
7	Change detection-based co-seismic landslide mapping through extended morphological profiles and ensemble strategy. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187, 225-239.	4.9	32
8	Probabilistic hazard assessment of landslide-induced river damming. Engineering Geology, 2022, 304, 106678.	2.9	13
9	Imminent threat of rock-ice avalanches in High Mountain Asia. Science of the Total Environment, 2022, 836, 155380.	3.9	16
10	Ecosystem carbon stock loss after a mega earthquake. Catena, 2022, 216, 106393.	2.2	4
11	Quantitative spatial distribution model of site-specific loess landslides on the Heifangtai terrace, China. Landslides, 2021, 18, 1163-1176.	2.7	20
12	Probabilistic rainfall thresholds for debris flows occurred after the Wenchuan earthquake using a Bayesian technique. Engineering Geology, 2021, 280, 105965.	2.9	23
13	Rapidly Evolving Controls of Landslides After a Strong Earthquake and Implications for Hazard Assessments. Geophysical Research Letters, 2021, 48, .	1.5	61
14	Co-seismic landslide mapping using Sentinel-2 10-m fused NIR narrow, red-edge, and SWIR bands. Landslides, 2021, 18, 2017.	2.7	14
15	Automated Mapping of Ms 7.0 Jiuzhaigou Earthquake (China) Post-Disaster Landslides Based on High-Resolution UAV Imagery. Remote Sensing, 2021, 13, 1330.	1.8	9
16	Hydro-sediment-morphodynamic processes of the baige landslide-induced barrier Lake, Jinsha River, China. Journal of Hydrology, 2021, 596, 126134.	2.3	24
17	Unraveling the drivers of intensified landslide regimes in Western Ghats, India. Science of the Total Environment, 2021, 770, 145357.	3.9	28
18	Landslides and fluvial response to landsliding induced by the 1933 Diexi earthquake, Minjiang River, eastern Tibetan Plateau. Landslides, 2021, 18, 3011-3025.	2.7	13

#	Article	IF	CITATIONS
19	Recent technological and methodological advances for the investigation of landslide dams. Earth-Science Reviews, 2021, 218, 103646.	4.0	42
20	Catastrophic debris flows triggered by the 20 August 2019 rainfall, a decade since the Wenchuan earthquake, China. Landslides, 2021, 18, 3197-3212.	2.7	23
21	Coseismic Debris Remains in the Orogen Despite a Decade of Enhanced Landsliding. Geophysical Research Letters, 2021, 48, e2021GL095850.	1.5	22
22	Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent. Geomatics, Natural Hazards and Risk, 2021, 12, 3089-3113.	2.0	10
23	The role of earthquake-induced landslides in erosion and weathering from active mountain ranges: Progress and perspectives. Science China Earth Sciences, 2021, 64, 2069.	2.3	4
24	Liquefaction within a bedding fault: Understanding the initiation and movement of the Daguangbao landslide triggered by the 2008 Wenchuan Earthquake (MsÂ=Â8.0). Engineering Geology, 2021, 295, 106455.	2.9	95
25	Erosion Mechanisms of Debris Flow on the Sediment Bed. Water Resources Research, 2021, 57, .	1.7	22
26	Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake. Remote Sensing of Environment, 2020, 236, 111476.	4.6	83
27	Prediction of a multi-hazard chain by an integrated numerical simulation approach: the Baige landslide, Jinsha River, China. Landslides, 2020, 17, 147-164.	2.7	97
28	Modeling and predicting reservoir landslide displacement with deep belief network and EWMA control charts: a case study in Three Gorges Reservoir. Landslides, 2020, 17, 693-707.	2.7	54
29	Landslide early warning, case studies from Southwest China. Engineering Geology, 2020, 279, 105917.	2.9	35
30	Topographic and near-surface stratigraphic amplification of the seismic response of a mountain slope revealed by field monitoring and numerical simulations. Engineering Geology, 2020, 271, 105607.	2.9	69
31	The formation and impact of landslide dams – State of the art. Earth-Science Reviews, 2020, 203, 103116.	4.0	133
32	Entering the Era of Earth Observation-Based Landslide Warning Systems: A Novel and Exciting Framework. IEEE Geoscience and Remote Sensing Magazine, 2020, 8, 136-153.	4.9	90
33	Particle comminution defines megaflood and superflood energetics. Earth-Science Reviews, 2020, 204, 103087.	4.0	13
34	Hydraulic control on the development of megaflood runup deposits. Geomorphology, 2020, 361, 107203.	1.1	4
35	A Sequentially Coupled Catchmentâ€5cale Numerical Model for Snowmeltâ€Induced Soil Slope Instabilities. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005468.	1.0	14
36	Prediction of a Multi-hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide Along the Jinsha River, China. Springer Series in Geomechanics and Geoengineering, 2020, , 384-392.	0.0	0

#	Article	IF	CITATIONS
37	The impact of earthquakes on orogen-scale exhumation. Earth Surface Dynamics, 2020, 8, 579-593.	1.0	7
38	Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism. Landslides, 2019, 16, 1551-1566.	2.7	85
39	Earthquakeâ€Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 2019, 57, 421-503.	9.0	505
40	Identifying post-earthquake debris flow hazard using Massflow. Engineering Geology, 2019, 258, 105134.	2.9	31
41	Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides, 2019, 16, 1003-1020.	2.7	145
42	Post-disaster assessment of 2017 catastrophic Xinmo landslide (China) by spaceborne SAR interferometry. Landslides, 2019, 16, 1189-1199.	2.7	36
43	Distinctive controls on the distribution of river-damming and non-damming landslides induced by the 2008 Wenchuan earthquake. Bulletin of Engineering Geology and the Environment, 2019, 78, 4075-4093.	1.6	16
44	The "long―runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report. Landslides, 2019, 16, 139-154.	2.7	74
45	Analysing post-earthquake mass movement volume dynamics with multi-source DEMs. Engineering Geology, 2019, 248, 89-101.	2.9	43
46	Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake. Engineering Geology, 2019, 250, 34-44.	2.9	81
47	Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth System Science Data, 2019, 11, 35-55.	3.7	87
48	Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides, 2018, 15, 967-983.	2.7	178
49	What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges. Engineering Geology, 2018, 241, 25-32.	2.9	173
50	Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory. Landslides, 2018, 15, 2325-2341.	2.7	102
51	Analyzing successive landslide dam formation by different triggering mechanisms: The case of the Tangjiawan landslide, Sichuan, China. Engineering Geology, 2018, 243, 128-144.	2.9	45
52	Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China). Landslides, 2018, 15, 1359-1375.	2.7	153
53	Brief communication: Post-seismic landslides, the tough lesson of a catastrophe. Natural Hazards and Earth System Sciences, 2018, 18, 397-403.	1.5	29
54	The iRALL Doctoral School 2018: advanced studies on large landslides on the 10th anniversary of the Wenchuan earthquake. Landslides, 2018, 15, 1901-1903.	2.7	2

#	Article	IF	CITATIONS
55	Characteristics and classification of landslide dams associated with the 2008 Wenchuan earthquake. Geoenvironmental Disasters, 2017, 4, .	1.8	47
56	A chemo-mechanical insight into the failure mechanism of frequently occurred landslides in the Loess Plateau, Gansu Province, China. Engineering Geology, 2017, 228, 337-345.	2.9	110
57	Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides, 2017, 14, 2129-2146.	2.7	231
58	Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area. Natural Hazards and Earth System Sciences, 2017, 17, 833-844.	1.5	35
59	The long-term geologic hazards and consequent risk after the Wenchuan earthquake. , 2016, , 233-258.		5
60	The Classification of Damming Landslides and Landslide Dams Induced by the Wenchuan Earthquake. , 2015, , 1143-1147.		5
61	Empirical prediction of coseismic landslide dam formation. Earth Surface Processes and Landforms, 2014, 39, 1913-1926.	1.2	53
62	Did the 2008 Wenchuan Earthquake Lead to a Net Volume Loss?. , 2014, , 191-196.		7
63	A Conceptual Event-Tree Model for Coseismic Landslide Dam Hazard Assessment. , 2014, , 605-608.		1
64	Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake. Geomorphology, 2013, 184, 127-138.	1.1	93
65	The landslide story. Nature Geoscience, 2013, 6, 325-326.	5.4	290
66	Response of High-Strength Rock Slope to Seismic Waves in a Shaking Table Test. Bulletin of the Seismological Society of America, 2013, 103, 3012-3025.	1.1	52
67	Analysis of landslide dams induced by the 2008 Wenchuan earthquake. Journal of Asian Earth Sciences, 2012, 57, 25-37.	1.0	122
68	Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China. Geomorphology, 2012, 171-172, 58-68.	1.1	83
69	Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake. Natural Hazards and Earth System Sciences, 2012, 12, 3031-3044.	1.5	77
70	The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides, 2012, 9, 131-142.	2.7	203
71	Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 2011, 133, 152-167.	1.1	502