Stefan Panglisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/768326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Climate Change on Drinking Water Safety. ACS ES&T Water, 2022, 2, 259-261.	4.6	16
2	Influence of reactivation conditions on the physio-chemical properties of activated carbon. Journal of Water Process Engineering, 2022, 48, 102784.	5.6	2
3	Fouling scenarios in hollow fiber membranes during mini-plant filtration tests and correlation to microalgae-loaded feed characteristics. Chemical Engineering Journal, 2021, 420, 127723.	12.7	14
4	Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles. Journal of Molecular Liquids, 2021, 323, 115075.	4.9	15
5	Removal of Trace Organic Contaminants by Parallel Operation of Reverse Osmosis and Granular Activated Carbon for Drinking Water Treatment. Membranes, 2021, 11, 33.	3.0	15
6	Minimizing the environmental impact of PFAS by using specialized coagulants for the treatment of PFAS polluted waters and for the decontamination of firefighting equipment. Emerging Contaminants, 2021, 7, 63-76.	4.9	14
7	Enhancing the Efficiency of Membrane Processes for Water Treatment. Membranes, 2021, 11, 215.	3.0	3
8	Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: Isotherms, kinetics, thermodynamics and desorption. Journal of Molecular Liquids, 2021, 329, 115584.	4.9	71
9	Studying Fluid Characteristics Atop Surface Patterned Membranes via Particle Image Velocimetry. Chemie-Ingenieur-Technik, 2021, 93, 1401-1407.	0.8	1
10	Preparation and characterization of nano-structured modified montmorillonite for dioxidine antibacterial drug removal in water. Journal of Molecular Liquids, 2021, 331, 115770.	4.9	56
11	Limits of High Recovery Inland Desalination: Closedâ€Circuit Reverse Osmosis – a Viable Option?. Chemie-Ingenieur-Technik, 2021, 93, 1359-1368.	0.8	1
12	Surface Modification of Readyâ€ŧoâ€Use Hollow Fiber Ultrafiltration Modules for Oil/Water Separation. Chemie-Ingenieur-Technik, 2021, 93, 1408-1416.	0.8	3
13	Membranen zum Schutz von Klima und Ressourcen?!. Chemie-Ingenieur-Technik, 2021, 93, 1331-1331.	0.8	0
14	Sustainable Development of Magnetic Chitosan Core–Shell Network for the Removal of Organic Dyes from Aqueous Solutions. Materials, 2021, 14, 7701.	2.9	10
15	Influence of Carbon Agglomerate Formation on Micropollutants Removal in Combined PAC-Membrane Filtration Processes for Advanced Wastewater Treatment. Water (Switzerland), 2021, 13, 3578.	2.7	3
16	Adsorption of organic pollutants from the aqueous phase using graphite as a model adsorbent. Adsorption Science and Technology, 2020, 38, 286-303.	3.2	7
17	Application-oriented mini-plant experiments using non-conventional model foulants to evaluate new hollow fiber membrane materials. Separation and Purification Technology, 2020, 251, 117345.	7.9	7
18	High performance isotropic polyethersulfone membranes for heavy oil-in-water emulsion separation. Separation and Purification Technology, 2020, 253, 117467.	7.9	37

STEFAN PANGLISCH

#	Article	IF	CITATIONS
19	Performance of Layer-by-Layer-Modified Multibore® Ultrafiltration Capillary Membranes for Salt Retention and Removal of Antibiotic Resistance Genes. Membranes, 2020, 10, 398.	3.0	6
20	Hydrophilic poly(phenylene sulfone) membranes for ultrafiltration. Separation and Purification Technology, 2020, 250, 117107.	7.9	13
21	Removal of diclofenac from water by in/out PAC/UF hybrid process. Environmental Technology (United Kingdom), 2018, 39, 2315-2320.	2.2	6
22	Measuring hydraulic layer resistance and correlated effects in colloidal fouling of salt-retaining membranes. Water Science and Technology: Water Supply, 2017, 17, 985-997.	2.1	4
23	The impact of optimised coagulation on membrane fouling for coagulation/ultrafiltration process. Desalination and Water Treatment, 2013, 51, 2718-2725.	1.0	16
24	Treatment Options for the Removal and Degradation of Polyfluorinated Chemicals. Handbook of Environmental Chemistry, 2012, , 103-125.	0.4	13
25	Membrane performance in combined processes including ozonation or advanced oxidation, powdered activated carbon and coagulation $\hat{a} \in $ " Investigations in pilot scale. Desalination, 2010, 250, 819-823.	8.2	13
26	p-Nitrophenol removal by combination of powdered activated carbon adsorption and ultrafiltration – comparison of different operational modes. Water Research, 2008, 42, 4117-4124.	11.3	37
27	Removal of trace organic substances from river bank filtrate – performance study of RO and NF membranes. Water Science and Technology: Water Supply, 2008, 8, 85-92.	2.1	10
28	Drinking water treatment with combined coagulation ultrafiltration—long term experience with Germany's largest plant. Water Science and Technology: Water Supply, 2008, 8, 363-375.	2.1	6
29	Neural networks and genetic algorithms in membrane technology modelling. Journal of Water Supply: Research and Technology - AQUA, 2008, 57, 23-34.	1.4	14
30	Particle removal with membranes in water treatment in Germany – state of the art and further developments. Journal of Water Supply: Research and Technology - AQUA, 2007, 56, 375-383.	1.4	3
31	Influence of organic-salt interactions on membrane (UF) fouling potential and pre-treatment by coagulation. Desalination, 2006, 200, 210-212.	8.2	0
32	Ceramic membranes for direct river water treatment applying coagulation and microfiltration. Water Science and Technology: Water Supply, 2006, 6, 89-98.	2.1	21
33	Foulant analysis of modified and unmodified membranes for water and wastewater treatment with LC-OCD. Desalination, 2005, 178, 63-72.	8.2	29
34	Direct river water treatment using coagulation/ceramic membrane microfiltration. Desalination, 2005, 179, 41-50.	8.2	57
35	Evaluation of the performance of different chemicals for cleaning capillary membranes. Desalination, 2005, 179, 191-202.	8.2	55
36	Transferring pilot experiments into the planning of Germany's largest two-stage ultrafiltration plant. Desalination, 2005, 179, 225-235.	8.2	13

STEFAN PANGLISCH

#	Article	IF	CITATIONS
37	Studies on the minimisation of NOM fouling of MF/UF membranes with the help of a submerged "single―capillary membrane apparatus. Desalination, 2005, 179, 355-367.	8.2	4
38	Research experiences in direct potable water treatment using coagulation/ultrafiltration. Water Science and Technology, 2005, 51, 221-229.	2.5	13
39	Planning of an ultrafiltration plant with a capacity of 6,000 m3 hâ^1 for the treatment of drinking water at Roetgen water works. Journal of Water Supply: Research and Technology - AQUA, 2004, 53, 497-508.	1.4	3
40	Formation and prevention of hardly removable particle layers in inside-out capillary membranes operating in dead-end mode. Water Science and Technology: Water Supply, 2003, 3, 117-124.	2.1	7
41	Development of a new integrity testing system. Water Science and Technology: Water Supply, 2003, 3, 101-108.	2.1	4
42	Monitoring the integrity of capillary membranes by particle counters. Desalination, 1998, 119, 65-72.	8.2	32
43	Ultra- and microfiltration pilot plant investigations to treat reservoir water. Desalination, 1998, 119, 277-287.	8.2	18
44	Optimization of operation and cleaning of membranes $\hat{a} \in \mathbb{C}^{2}$ Results on ultra- and microfiltration pilot	8.2	7

Optimization of operation and cleaning of membranes $\hat{a} \in$ Results on ultra- and microfiltration pilot plant investigations to treat reservoir water. Desalination, 1997, 113, 247-249. 44

4