Prasanth Reddy Nyalapatla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7683183/publications.pdf

Version: 2024-02-01

18 papers 520 citations

840585 11 h-index 18 g-index

20 all docs

20 docs citations

times ranked

20

851 citing authors

#	Article	IF	CITATIONS
1	Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro). Journal of Biological Chemistry, 2015, 290, 19403-19422.	1.6	134
2	Design and Development of Highly Potent HIV-1 Protease Inhibitors with a Crown-Like Oxotricyclic Core as the P2-Ligand To Combat Multidrug-Resistant HIV Variants. Journal of Medicinal Chemistry, 2017, 60, 4267-4278.	2.9	64
3	Zinc Catalyzed and Mediated Asymmetric Propargylation of Trifluoromethyl Ketones with a Propargyl Boronate. Journal of Organic Chemistry, 2013, 78, 3592-3615.	1.7	47
4	A novel central nervous system-penetrating protease inhibitor overcomes human immunodeficiency virus 1 resistance with unprecedented aM to pM potency. ELife, 2017, 6, .	2.8	44
5	Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2 Ligands: Design, Synthesis, and Protein–Ligand X-ray Studies. Journal of Medicinal Chemistry, 2013, 56, 6792-6802.	2.9	42
6	Design of Highly Potent, Dualâ€Acting and Centralâ€Nervousâ€Systemâ€Penetrating HIVâ€1 Protease Inhibitors with Excellent Potency against Multidrugâ€Resistant HIVâ€1 Variants. ChemMedChem, 2018, 13, 803-815.	1.6	36
7	Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring Systems as Novel P2 Ligands: Structure–Activity Studies, Biological and X-ray Structural Analysis. Journal of Medicinal Chemistry, 2018, 61, 4561-4577.	2.9	31
8	X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease: Structural implications for drug design. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5072-5077.	1.0	19
9	Enantioselective Total Synthesis of (+)-Amphirionin-4. Organic Letters, 2016, 18, 2296-2299.	2.4	16
10	Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex. Bioorganic and Medicinal Chemistry, 2017, 25, 5114-5127.	1.4	16
11	Single atom changes in newly synthesized HIV protease inhibitors reveal structural basis for extreme affinity, high genetic barrier, and adaptation to the HIV protease plasticity. Scientific Reports, 2020, 10, 10664.	1.6	13
12	Halogen Bond Interactions of Novel HIV-1 Protease Inhibitors (PI) (GRL-001-15 and GRL-003-15) with the Flap of Protease Are Critical for Their Potent Activity against Wild-Type HIV-1 and Multi-PI-Resistant Variants. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	12
13	A Novel Tricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor, GRL-0739, Effectively Inhibits the Replication of Multidrug-Resistant HIV-1 Variants and Has a Desirable Central Nervous System Penetration Property <i>In Vitro</i> Antimicrobial Agents and Chemotherapy, 2015, 59, 2625-2635.	1.4	10
14	Design, synthesis, biological evaluation and X-ray structural studies of HIV-1 protease inhibitors containing substituted fused-tetrahydropyranyl tetrahydrofuran as P2-ligands. Organic and Biomolecular Chemistry, 2015, 13, 11607-11621.	1.5	10
15	Total syntheses of both enantiomers of amphirionin 4: A chemoenzymatic based strategy for functionalized tetrahydrofurans. Tetrahedron, 2017, 73, 1820-1830.	1.0	10
16	A New Synthesis of Gefitinib. Synlett, 2019, 30, 471-476.	1.0	6
17	Fluorescent Probes for Monitoring Serine Ubiquitination. Biochemistry, 2020, 59, 1309-1313.	1.2	6
18	Co(II)â€salen catalyzed stereoselective cyclopropanation of fluorinated styrenes. Chirality, 2019, 31, 1014-1027.	1.3	4