Stylianos Neophytides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7683157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How the surface state of nickel/gadolinium-doped ceria cathodes influences the electrochemical performance in direct CO2 electrolysis. Journal of Catalysis, 2021, 404, 518-528.	3.1	10
2	Steam effect on Gerischer impedance response of a Ni/GDC YSZ LSM fuel cell / anode. Journal of Power Sources, 2020, 448, 227404.	4.0	8
3	Crosslinked polymer electrolytes of high pyridine contents for HT-PEM fuel cells. International Journal of Hydrogen Energy, 2020, 45, 35053-35063.	3.8	17
4	The electrochemical interface of the cathode in high temperature PEM fuel cells. Electrochimica Acta, 2020, 356, 136778.	2.6	7
5	The promoting effect of Fe on Ni/ <scp>GDC</scp> for the Solid Oxide <scp> H ₂ O </scp> electrolysis. International Journal of Energy Research, 2020, 44, 10982-10995.	2.2	10
6	The photo-electrokinetics of the O2 evolution reaction on ZnO nanorods. Electrochimica Acta, 2019, 298, 587-598.	2.6	10
7	Highly dispersed platinum supported catalysts – Effect of properties on the electrocatalytic activity. Applied Catalysis B: Environmental, 2019, 259, 118050.	10.8	32
8	Experimental Clarification of the RWGS Reaction Effect in H2O/CO2 SOEC Co-Electrolysis Conditions. Catalysts, 2019, 9, 151.	1.6	26
9	Technological aspects of an auxiliary power unitÂwith internal reforming methanol fuel cell. International Journal of Hydrogen Energy, 2019, 44, 12818-12828.	3.8	14
10	Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency. International Journal of Hydrogen Energy, 2018, 43, 4866-4879.	3.8	51
11	Electrocatalytic performance and carbon tolerance of ternary Au-Mo-Ni/GDC SOFC anodes under CH4-rich Internal Steam Reforming conditions. Catalysis Today, 2018, 310, 157-165.	2.2	23
12	Editorial: Advanced Utilization and Management of Biogas. Frontiers in Environmental Science, 2018, 6,	1.5	2
13	Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications. Catalysts, 2018, 8, 544.	1.6	27
14	Investigation of Advanced Components in a High Pressure Single-Cell Electrolyser for the Development of a HP-PEM-ELY Stack as Part of a Regenerative Fuel Cell System. E3S Web of Conferences, 2017, 16, 09004.	0.2	0
15	High Temperature PEM Fuel Cell Stacks with Advent TPS Meas. E3S Web of Conferences, 2017, 16, 10002.	0.2	1
16	Mitigation strategy towards stabilizing the Electrochemical Interface under high CO and H2O containing reformate gas feed. Electrochimica Acta, 2017, 233, 218-228.	2.6	20
17	Modified NiO/GDC Cermets as Possible Cathode Electrocatalysts for H ₂ O Electrolysis and H ₂ O/CO ₂ Co-Electrolysis Processes in SOECs. ECS Transactions, 2017, 78, 3267-3274.	0.3	4
18	Simulation of HT-PEMFC AC Impedance Spectra: Relaxation Impedance and Identification of Oxygen Reduction Reaction Mechanism. ECS Transactions, 2017, 80, 37-56.	0.3	0

STYLIANOS NEOPHYTIDES

#	Article	IF	CITATIONS
19	Effect of Au and/or Mo Doping on the Development of Carbon and Sulfur Tolerant Anodes for SOFCs—A Short Review. Frontiers in Environmental Science, 2017, 5, .	1.5	13
20	Fuel cells are a commercially viable alternative for the production of "clean―energy. Ambio, 2016, 45, 32-37.	2.8	55
21	Electrochemical Impedance Spectroscopy study in micro-grain structured amorphous silicon anodes for lithium-ion batteries. Journal of Power Sources, 2016, 331, 285-292.	4.0	36
22	Electrochemical Performance of Sn/C Nanocomposites Interphased with Varying Mixtures of Ethyl-, Dimethyl- and Vinylene-Carbonate. Journal of the Electrochemical Society, 2016, 163, A1013-A1019.	1.3	5
23	Performance evaluation of a proof-of-concept 70ÂW internal reforming methanol fuel cell system. Journal of Power Sources, 2016, 307, 875-882.	4.0	31
24	Pyridine Containing Aromatic Polyether Membranes. , 2016, , 91-126.		3
25	Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell. Journal of Power Sources, 2015, 296, 335-343.	4.0	23
26	<i>In situ</i> investigation of dissociation and migration phenomena at the Pt/electrolyte interface of an electrochemical cell. Chemical Science, 2015, 6, 5635-5642.	3.7	34
27	The structure and stability of the anodic electrochemical interface in a high temperature polymer electrolyte membrane fuel cell under reformate feed. Journal of Power Sources, 2015, 285, 499-509.	4.0	23
28	The In Situ Electrochemical Stable Promotion of Photoelectrocatalytic Activity of TiO ₂ by Pulsed Reductive Doping: Application in Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 2015, 162, H397-H402.	1.3	3
29	Scanning Photoelectron Microscopy Study of the Pt/Phosphoricâ€Acidâ€Imbibed Membrane Interface under Polarization. ChemElectroChem, 2014, 1, 180-186.	1.7	23
30	In situ hydrogen utilization in an internal reforming methanol fuel cell. International Journal of Hydrogen Energy, 2014, 39, 18103-18108.	3.8	40
31	Advanced catalytic layer architectures for polymer electrolyte membrane fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 505-521.	1.9	22
32	The interaction of H ₃ PO ₄ and steam with PBI and TPS polymeric membranes. A TGA and Raman study. Journal of Materials Chemistry A, 2014, 2, 1117-1127.	5.2	36
33	Polymer electrolyte membranes based on blends of sulfonated polysulfone and PEOâ€grafted polyethersulfone for low temperature water electrolysis. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
34	Synthesis and properties of aromatic polyethers containing poly(ethylene oxide) side chains as polymer electrolytes for lithium ion batteries. Materials Chemistry and Physics, 2014, 148, 57-66.	2.0	16
35	Covalent cross-linking in phosphoric acid of pyridine based aromatic polyethers bearing side double bonds for use in high temperature polymer electrolyte membrane fuelcells. Journal of Membrane Science, 2013, 433, 1-9.	4.1	36
36	Mathematical modeling of Ni/GDC and Au–Ni/GDC SOFC anodes performance under internal methane steam reforming conditions. Journal of Catalysis, 2013, 306, 116-128.	3.1	42

#	Article	IF	CITATIONS
37	The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells. Journal of Applied Electrochemistry, 2013, 43, 1101-1116.	1.5	29
38	On the kinetics of photoelectrocatalytic water splitting on nanocrystalline TiO2 films. Applied Catalysis B: Environmental, 2013, 132-133, 543-552.	10.8	13
39	Cross-linked high temperature polymer electrolytes through oxadiazole bond formation and their applications in HT PEMfuel cells. Journal of Materials Chemistry A, 2013, 1, 1613-1622.	5.2	34
40	A new in-situ spectroelectrochemical setup for FTIR measurements in operating high temperature polymer electrolyte fuel cells. Electrochemistry Communications, 2013, 34, 200-203.	2.3	4
41	Study of the synergistic interaction between nickel, gold and molybdenum in novel modified NiO/GDC cermets, possible anode materials for CH4 fueled SOFCs. Applied Catalysis A: General, 2013, 456, 223-232.	2.2	26
42	Solid Oxide Fuel Cells: On the Active Surface State of Nickelâ€Ceria Solid Oxide Fuel Cell Anodes During Methane Electrooxidation (Adv. Energy Mater. 6/2013). Advanced Energy Materials, 2013, 3, 690-690.	10.2	3
43	On the Active Surface State of Nickelâ€Ceria Solid Oxide Fuel Cell Anodes During Methane Electrooxidation. Advanced Energy Materials, 2013, 3, 762-769.	10.2	61
44	Performance of internal reforming methanol fuel cell under various methanol/water concentrations. Journal of Applied Electrochemistry, 2012, 42, 719-726.	1.5	23
45	Thermal crosslinking of aromatic polyethers bearing pyridine groups for use as high temperature polymer electrolytes. Journal of Membrane Science, 2012, 415-416, 42-50.	4.1	21
46	Polymer blends based on copolymers bearing both side and main chain pyridine units as proton exchange membranes for high temperature fuel cells. Journal of Membrane Science, 2012, 396, 57-66.	4.1	16
47	Cross-Linking of Side Chain Unsaturated Aromatic Polyethers for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. Macromolecules, 2011, 44, 4942-4951.	2.2	62
48	Characterization and Carbon Tolerance of New Au - Mo - Ni/GDC Cermet Powders for use as Anode Materials in Methane Fuelled SOFCs. ECS Transactions, 2011, 35, 1329-1336.	0.3	8
49	6 Materials, Proton Conductivity and Electrocatalysis in High-Temperature PEM Fuel Cells. Modern Aspects of Electrochemistry, 2011, , 301-368.	0.2	4
50	High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2011, 196, 9382-9390.	4.0	45
51	Development of an internal reforming alcohol fuel cell: Concept, challenges and opportunities. Chemical Engineering Journal, 2011, 176-177, 95-101.	6.6	36
52	Synthesis and characterization of doped apatite-type lanthanum silicates for SOFC applications. Solid State lonics, 2011, 192, 158-162.	1.3	29
53	Preparation and characterization of Pt on modified multi-wall carbon nanotubes to be used as electrocatalysts for high temperature fuel cell applications. Applied Catalysis B: Environmental, 2011, 106, 379-389.	10.8	56
54	Preparation and ion transport properties of NaY zeolite–ionic liquid composites. Journal of Power Sources, 2011, 196, 2202-2210.	4.0	26

#	Article	IF	CITATIONS
55	Photoelectrocatalytic Electricity and/or H[sub 2] Production from Alcohols: The Effect of TiO[sub 2] Film Thickness. Journal of the Electrochemical Society, 2011, 158, H183.	1.3	15
56	An efficient photoelectrochemical cell functioning in the presence of organic wastes. Solar Energy Materials and Solar Cells, 2010, 94, 592-597.	3.0	78
57	New proton conducting polymer blends and their fuel cell performance. Journal of Power Sources, 2010, 195, 170-174.	4.0	24
58	Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming. International Journal of Hydrogen Energy, 2010, 35, 7898-7904.	3.8	62
59	A comparative in situ XPS study of PtRuCo catalyst in methanol steam reforming and water gas shift reactions. Catalysis Today, 2010, 157, 250-256.	2.2	20
60	Influence of the Molecular Structure on the Properties and Fuel Cell Performance of High Temperature Polymer Electrolyte Membranes. ECS Transactions, 2010, 33, 811-822.	0.3	1
61	Photo-Induced Alcohol Electro-Reforming for H2 Production. ECS Transactions, 2010, 25, 63-72.	0.3	4
62	Proton Conduction Mechanism in H3PO4 Imbibed PEMs: The Effect of Chemical Structure and Steam. ECS Transactions, 2010, 33, 785-796.	0.3	2
63	Non Noble Metal Electrocatalysts for High Temperature PEM Fuel Cells. ECS Transactions, 2009, 25, 181-189.	0.3	6
64	Thermogravimetric and Electrocatalytic Study of Carbon Deposition of Agâ€doped Ni/YSZ Electrodes under Internal CH ₄ Steam Reforming Conditions. Fuel Cells, 2009, 9, 883-890.	1.5	20
65	Polymer electrolyte membranes for highâ€ŧemperature fuel cells based on aromatic polyethers bearing pyridine units. Polymer International, 2009, 58, 1226-1233.	1.6	65
66	The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI/polysulfone copolymer blends. Journal of Membrane Science, 2009, 326, 76-83.	4.1	84
67	Reforming methanol to electricity in a high temperature PEM fuel cell. Applied Catalysis B: Environmental, 2009, 90, 628-632.	10.8	52
68	Comparative study of La–Sr–Fe–O perovskite-type oxides prepared by ceramic and surfactant methods over the CH4 and H2 lean-deNOx. Applied Catalysis B: Environmental, 2009, 93, 1-11.	10.8	51
69	Effect of the conditions of platinum deposition on titania nanocrystalline films on the efficiency of photocatalytic oxidation of ethanol and production of hydrogen. Photochemical and Photobiological Sciences, 2009, 8, 639-643.	1.6	25
70	Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode. Journal of Power Sources, 2008, 185, 1073-1078.	4.0	37
71	New High Temperature Polymer Electrolyte Membranes. Influence of the Chemical Structure on their Properties. Fuel Cells, 2008, 8, 200-208.	1.5	25
72	Electronic structure modifications and HER of annealed electrodeposited Ni overlayers on Mo polycrystalline surface. Electrochimica Acta, 2008, 53, 8015-8025.	2.6	17

STYLIANOS NEOPHYTIDES

#	Article	IF	CITATIONS
73	Carbon tolerant Ni–Au SOFC electrodes operating under internal steam reforming conditions. Journal of Catalysis, 2008, 259, 75-84.	3.1	92
74	Novel Pyridine-Based Poly(ether sulfones) and their Study in High Temperature PEM Fuel Cells. Macromolecules, 2008, 41, 9051-9056.	2.2	47
75	High Tolerant to Carbon Deposition Ni-based Electrodes under Internal Steam Reforming Conditions. ECS Transactions, 2007, 7, 1483-1490.	0.3	5
76	The Electrokinetics of CO Oxidation on Pt[sub 4]Mo(20â€,wtâ€,%)â^•C Interfaced with Nafion Membrane. Journal of the Electrochemical Society, 2007, 154, B989.	1.3	18
77	Promotional effects on a PtRu/C catalyst-electrode interfaced with aqueous electrolytes: electrochemical metal support interaction (EMSI) and electrochemical promotion of catalysis (EPOC). Topics in Catalysis, 2007, 44, 451-460.	1.3	8
78	Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions. Surface Science, 2007, 601, 1949-1966.	0.8	70
79	Spillover of primary oxides as a dynamic catalytic effect of interactive hypo-d-oxide supports. Electrochimica Acta, 2007, 53, 349-361.	2.6	60
80	Numerical simulation of methane fuelled cogenerative SOFCs for the production of synthesis gas and electrical energy. Chemical Engineering Science, 2007, 62, 3868-3881.	1.9	7
81	Composite Hypo-Hyper-d-Intermetallic and Interionic Phases as Supported Interactive Electrocatalysts. Journal of Physical Chemistry B, 2006, 110, 3030-3042.	1.2	64
82	Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support. Catalysis Today, 2006, 117, 475-483.	2.2	51
83	Combined XPS, electrochemical and Kelvin probe measurements of NaY zeolite. Solid State Ionics, 2006, 177, 971-977.	1.3	8
84	Methane oxidation on composite ruthenium electrodes in YSZ cells. Solid State Ionics, 2006, 177, 2087-2091.	1.3	19
85	Dissociative adsorption of CH4 on NiAu/YSZ: The nature of adsorbed carbonaceous species and the inhibition of graphitic C formation. Journal of Catalysis, 2006, 239, 187-199.	3.1	89
86	Extended Brewer hypo?hyperinterionic bonding theory ? I. Theoretical considerations and examples for its experimental confirmation. International Journal of Hydrogen Energy, 2005, 30, 131-147.	3.8	36
87	Mechanosynthesis of complex oxides with fluorite and perovskite-related structures and their sintering into nanocomposites with mixed ionic–electronic conductivity. Solid State Ionics, 2005, 176, 2813-2818.	1.3	24
88	Structural effects on kinetic properties for hydrogen electrode reactions and CO tolerance along Mo–Pt phase diagram. Surface Science, 2005, 598, 156-173.	0.8	41
89	Mechanosynthesis of complex oxides and preparation of mixed conducting nanocomposites for catalytic membrane reactors. Catalysis Today, 2005, 104, 114-119.	2.2	26
90	The effect of Mo oxides and TiO2 support on the chemisorption features of linearly adsorbed CO on Pt crystallites: an infrared and photoelectron spectroscopy study. Journal of Catalysis, 2005, 232, 127-136.	3.1	85

#	Article	IF	CITATIONS
91	Proton tunneling-induced bistability, oscillations and enhanced performance of PEM fuel cells. Applied Catalysis B: Environmental, 2005, 56, 251-258.	10.8	29
92	Extended Brewer hypo-hyperinterionic bonding theory II. Strong metal-support interaction grafting of composite electrocatalysts. International Journal of Hydrogen Energy, 2005, 30, 393-410.	3.8	38
93	Effect of the lattice oxygen mobility on the activity of Gd-doped ceria promoted with pt in syngas generation from methane at short contact times. Reaction Kinetics and Catalysis Letters, 2005, 85, 375-382.	0.6	7
94	Mobility and reactivity of lattice oxygen in Gd-doped ceria promoted by Pt. Reaction Kinetics and Catalysis Letters, 2005, 85, 367-374.	0.6	14
95	Mobility and reactivity of the lattice oxygen of Pr-doped ceria promoted with Pt. Reaction Kinetics and Catalysis Letters, 2005, 86, 21-28.	0.6	14
96	Performance of Pr-doped ceria promoted by Pt in syngas generation from methane at short contact times. Reaction Kinetics and Catalysis Letters, 2005, 86, 29-36.	0.6	5
97	Structural features and the lattice oxygen reactivity of low-temperature lanthanum manganites doped with different cations. Reaction Kinetics and Catalysis Letters, 2005, 86, 249-256.	0.6	11
98	Effect of the surface/bulk doping of lanthanum manganite on the oxygen mobility, reactivity and catalytic activity in the CO oxidation. Reaction Kinetics and Catalysis Letters, 2005, 86, 257-265.	0.6	6
99	Properties of Ce–Zr–La–O nano-system with ruthenium modified surface. Progress in Solid State Chemistry, 2005, 33, 317-325.	3.9	15
100	Synthesis and sintering of ceramic nanocomposites with high mixed conductivity. Science of Sintering, 2005, 37, 45-54.	0.5	8
101	Structural effects on kinetic properties for hydrogen electrode reactions and CO tolerance along Mo-Pt phase diagram. Chemical Industry and Chemical Engineering Quarterly, 2005, 11, 129-136.	0.4	0
102	Methane selective oxidation into syngas by the lattice oxygen in ceria-based solid electrolytes promoted by Pt. Studies in Surface Science and Catalysis, 2004, 147, 241-246.	1.5	2
103	Specificity of the Local Structure of Nanocrystalline Doped Ceria Solid Electrolytes. Materials Research Society Symposia Proceedings, 2004, 835, K3.6.1.	0.1	1
104	Reactivity of surface and bulk oxygen in La1-xCaxFeO3-ysystem with respect to methane oxidation. Reaction Kinetics and Catalysis Letters, 2004, 81, 393-398.	0.6	19
105	Ceria-based fluorite-like oxide solid solutions as catalysts of methane selective oxidation into syngas by the lattice oxygen: synthesis, characterization and performance. Catalysis Today, 2004, 93-95, 45-53.	2.2	71
106	Underpotential deposition of hydrogen on MoPt4 intermetallic phase in acid solution: temperature dependence. International Journal of Hydrogen Energy, 2004, 29, 835-842.	3.8	6
107	Thermal stability of electrodeposited nickel on vanadium: evidence for oxygen diffusion and intermetallic phase formation. Surface Science, 2004, 552, 215-228.	0.8	8
108	Methane transformation into syngas over Ce–Zr–O systems: role of the surface/bulk promoters and oxygen mobility. Catalysis Today, 2004, 91-92, 161-164.	2.2	18

#	Article	IF	CITATIONS
109	Nickel Electrodeposition on a Gold Polycrystalline Foil:  A Combined Voltammetric and Photoelectron Spectroscopy Study. Journal of Physical Chemistry B, 2004, 108, 1371-1379.	1.2	9
110	Smart Polymer Surfaces. Macromolecules, 2003, 36, 1994-1999.	2.2	87
111	Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Applied Catalysis B: Environmental, 2003, 42, 187-201.	10.8	424
112	The nature and binding strength of carbon adspecies formed during the equilibrium dissociative adsorption of CH4 on Ni–YSZ cermet catalysts. Journal of Catalysis, 2003, 217, 324-333.	3.1	61
113	Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. Journal of Catalysis, 2003, 220, 127-135.	3.1	408
114	Selective Interactive Grafting of Composite Bifunctional Electrocatalysts for Simultaneous Anodic Hydrogen and CO Oxidation. Journal of the Electrochemical Society, 2003, 150, E512.	1.3	45
115	AC impedance study of Ni–YSZ cermet anodes in methane-fuelled internal reforming YSZ fuel cells. Solid State Ionics, 2002, 152-153, 447-453.	1.3	22
116	A photoelectron spectroscopy study of Au thin films on ZrO2 (100). Thin Solid Films, 2001, 386, 53-58.	0.8	9
117	Partial Oxidation of Methane to Synthesis Gas over Ru/TiO2 Catalysts: Effects of Modification of the Support on Oxidation State and Catalytic Performance. Journal of Catalysis, 2001, 198, 195-207.	3.1	66
118	Efficiency of a solid polymer fuel cell operating on ethanol. Journal of Power Sources, 2000, 91, 150-156.	4.0	26
119	XPS characterization of the electrochemically generated O species on a Au electrode evaporated on Y2O3-stabilized ZrO2 (100). Solid State Ionics, 2000, 136-137, 801-806.	1.3	16
120	Investigation of electrochemical promotion using temperature-programmed desorption and work function measurements. Solid State Ionics, 2000, 136-137, 839-847.	1.3	14
121	Intrinsic Kinetics of the Internal Steam Reforming of CH4 over a Niâ^'YSZâ^'Cermet Catalystâ^'Electrode. Industrial & Engineering Chemistry Research, 2000, 39, 4920-4927.	1.8	52
122	The reversed flow operation of a crossflow solid oxide fuel cell monolith. Chemical Engineering Science, 1999, 54, 4603-4613.	1.9	24
123	Unsteady state operation of catalytic particles with constant and periodically changing degree of external wetting. Chemical Engineering Science, 1998, 53, 3129-3142.	1.9	13
124	Temperature-Programmed Desorption of Oxygen from Pt Films Interfaced with Y2O3-Doped ZrO2. Journal of Catalysis, 1998, 178, 414-428.	3.1	47
125	The transient operation of a solid oxide fuel cell monolith under forced periodic reversal of the flow. Canadian Journal of Chemical Engineering, 1996, 74, 719-728.	0.9	7
126	Electrochemical promotion of catalyst surfaces deposited on ionic and mixed conductors. Ionics, 1995, 1, 414-420.	1.2	4

STYLIANOS NEOPHYTIDES

#	Article	IF	CITATIONS
127	Catalysis, electrocatalysis and electrochemical promotion of the steam reforming of methane over Ni film and Ni-YSZ cermet anodes. Ionics, 1995, 1, 491-498.	1.2	53
128	The effect of catalyst-electrode potential and work function on the chemisorptive bond of oxygen on Pt interfaced with YSZ. Ionics, 1995, 1, 80-84.	1.2	12
129	In Situ Controlled Promotion of Catalyst Surfaces Via Solid Electrolytes: The NEMCA Effect. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 1393-1401.	0.9	5
130	Electrochemical promotion in catalysis: non-faradaic electrochemical modification of catalytic activity. Electrochimica Acta, 1994, 39, 1849-1855.	2.6	47
131	A bench scale study of reversed flow methanol synthesis. [Erratum to document cited in CA117(4):29174e]. Industrial & Engineering Chemistry Research, 1993, 32, 396-396.	1.8	Ο
132	Ion spillover as the origin of the NEMCA effect. Studies in Surface Science and Catalysis, 1993, , 111-116.	1.5	3
133	A bench scale study of reversed flow methanol synthesis. Industrial & Engineering Chemistry Research, 1992, 31, 1583-1589.	1.8	42
134	Non-Faradaic electrochemical modification of catalytic activity: the work function of metal electrodes in solid electrolyte cells. Solid State Ionics, 1992, 53-56, 97-110.	1.3	8
135	Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy. Applied Catalysis A: General, 1992, 86, 45-64.	2.2	96
136	Non-faradaic electrochemical modification of catalytic activity III. The case of methanol oxidation on Pt. Journal of Catalysis, 1991, 127, 645-664.	3.1	48
137	Chemical Cogeneration in Solid Electrolyte Cells: The Oxidation of to. Journal of the Electrochemical Society, 1990, 137, 839-845.	1.3	26
138	Non-faradaic electrochemical modification of catalytic activity 2. The case of methanol dehydrogenation and decomposition on Ag. Journal of Catalysis, 1989, 118, 147-163.	3.1	64
139	Non-faradaic electrochemical modification of catalytic activity in solid electrolyte cells. Applied Physics A: Solids and Surfaces, 1989, 49, 95-103.	1.4	51
140	Solid electrolyte aided study of the mechanism of CO oxidation on polycrystalline platinum. Journal of Catalysis, 1988, 111, 152-169.	3.1	61