
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7683093/publications.pdf Version: 2024-02-01

OINCHAI SONC

#	Article	IF	CITATIONS
1	Ultrafast control of vortex microlasers. Science, 2020, 367, 1018-1021.	6.0	457
2	All-Dielectric Full-Color Printing with TiO ₂ Metasurfaces. ACS Nano, 2017, 11, 4445-4452.	7.3	361
3	All-dielectric metasurface for high-performance structural color. Nature Communications, 2020, 11, 1864.	5.8	266
4	Reprogrammable meta-hologram for optical encryption. Nature Communications, 2020, 11, 5484.	5.8	171
5	Random lasing in bone tissue. Optics Letters, 2010, 35, 1425.	1.7	163
6	Recent Advances in Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2018, 6, 1800278.	3.6	149
7	Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces. ACS Nano, 2018, 12, 2151-2159.	7.3	147
8	Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nature Communications, 2019, 10, 3263.	5.8	147
9	Lead Halide Perovskite Nanostructures for Dynamic Color Display. ACS Nano, 2018, 12, 8847-8854.	7.3	142
10	Highly Reproducible Organometallic Halide Perovskite Microdevices based on Topâ€Đown Lithography. Advanced Materials, 2017, 29, 1606205.	11.1	138
11	Microfiber knot dye laser based on the evanescent-wave-coupled gain. Applied Physics Letters, 2007, 90, 233501.	1.5	134
12	Twoâ€₽hoton Pumped CH ₃ NH ₃ PbBr ₃ Perovskite Microwire Lasers. Advanced Optical Materials, 2016, 4, 472-479.	3.6	134
13	Integrated photonic power divider with arbitrary power ratios. Optics Letters, 2017, 42, 855.	1.7	130
14	High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nature Communications, 2021, 12, 5560.	5.8	130
15	Nonlinear Holographic All-Dielectric Metasurfaces. Nano Letters, 2018, 18, 8054-8061.	4.5	118
16	Multidimensional phase singularities in nanophotonics. Science, 2021, 374, eabj0039.	6.0	108
17	Unidirectional Lasing Emissions from CH ₃ NH ₃ PbBr ₃ Perovskite Microdisks. ACS Photonics, 2016, 3, 1125-1130.	3.2	106
18	All-optical control of lead halide perovskite microlasers. Nature Communications, 2019, 10, 1770.	5.8	104

#	Article	IF	CITATIONS
19	Breakup and Recovery of Topological Zero Modes in Finite Non-Hermitian Optical Lattices. Physical Review Letters, 2019, 123, 165701.	2.9	99
20	TiO ₂ metasurfaces: From visible planar photonics to photochemistry. Science Advances, 2019, 5, eaax0939.	4.7	91
21	Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nature Communications, 2019, 10, 2085.	5.8	91
22	Chaotic microcavity laser with high quality factor and unidirectional output. Physical Review A, 2009, 80, .	1.0	89
23	Surface-Emitting Perovskite Random Lasers for Speckle-Free Imaging. ACS Nano, 2019, 13, 10653-10661.	7.3	87
24	Channeling Chaotic Rays into Waveguides for Efficient Collection of Microcavity Emission. Physical Review Letters, 2012, 108, 243902.	2.9	85
25	A conductivity-based selective etching for next generation GaN devices. Physica Status Solidi (B): Basic Research, 2010, 247, 1713-1716.	0.7	84
26	Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate. ACS Nano, 2018, 12, 3865-3874.	7.3	81
27	Stretchable All-Dielectric Metasurfaces with Polarization-Insensitive and Full-Spectrum Response. ACS Nano, 2020, 14, 1418-1426.	7.3	80
28	Lead halide perovskite vortex microlasers. Nature Communications, 2020, 11, 4862.	5.8	75
29	Micro―and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices. Advanced Materials, 2021, 33, e2000306.	11.1	75
30	Tailoring the Performances of Lead Halide Perovskite Devices with Electronâ€Beam Irradiation. Advanced Materials, 2017, 29, 1701636.	11.1	72
31	Solutionâ€Phase Synthesis of Cesium Lead Halide Perovskite Microrods for Highâ€Quality Microlasers and Photodetectors. Advanced Optical Materials, 2017, 5, 1700023.	3.6	66
32	Very sharp adiabatic bends based on an inverse design. Optics Letters, 2018, 43, 2482.	1.7	66
33	Chip‣cale Fabrication of Uniform Lead Halide Perovskites Microlaser Array and Photodetector Array. Laser and Photonics Reviews, 2018, 12, 1700234.	4.4	65
34	Experimental demonstration of PTâ€symmetric stripe lasers. Laser and Photonics Reviews, 2016, 10, 588-594.	4.4	64
35	Unidirectional High Intensity Narrow-Linewidth Lasing from a Planar Random Microcavity Laser. Physical Review Letters, 2006, 96, 033902.	2.9	60
36	Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	58

#	Article	IF	CITATIONS
37	Highly Controllable Etchless Perovskite Microlasers Based on Bound States in the Continuum. ACS Nano, 2021, 15, 7386-7391.	7.3	58
38	Random laser spectroscopy for nanoscale perturbation sensing. Optics Letters, 2010, 35, 2624.	1.7	56
39	Far-field single nanoparticle detection and sizing. Optica, 2017, 4, 1151.	4.8	55
40	High-Density and Uniform Lead Halide Perovskite Nanolaser Array on Silicon. Journal of Physical Chemistry Letters, 2016, 7, 2549-2555.	2.1	54
41	Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation. Optics Letters, 2016, 41, 555.	1.7	52
42	Dynamic Bifunctional Metasurfaces for Holography and Color Display. Advanced Materials, 2021, 33, e2101258.	11.1	52
43	Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity. Optics Letters, 2009, 34, 298.	1.7	51
44	Detection of nanoscale structural changes in bone using random lasers. Biomedical Optics Express, 2010, 1, 1401.	1.5	51
45	Onâ€Chip Spiral Waveguides for Ultrasensitive and Rapid Detection of Nanoscale Objects. Advanced Materials, 2018, 30, e1800262.	11.1	49
46	Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers. Scientific Reports, 2017, 7, 45391.	1.6	48
47	\$2-mu\$ m Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW. IEEE Photonics Technology Letters, 2018, 30, 471-474.	1.3	48
48	Lead Halide Perovskite Based Microdisk Lasers for On hip Integrated Photonic Circuits. Advanced Optical Materials, 2018, 6, 1701266.	3.6	48
49	Local Chirality of Optical Resonances in Ultrasmall Resonators. Physical Review Letters, 2012, 108, 253902.	2.9	47
50	Infrared metasurface-enabled compact polarization nanodevices. Materials Today, 2021, 50, 499-515.	8.3	47
51	Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics, 2020, 9, 4407-4431.	2.9	47
52	A hybrid system with highly enhanced graphene SERS for rapid and tag-free tumor cells detection. Scientific Reports, 2016, 6, 25134.	1.6	45
53	End-fire injection of light into high-Q silicon microdisks. Optica, 2018, 5, 612.	4.8	44
54	Highly Compact and Efficient Four-Mode Multiplexer Based on Pixelated Waveguides. IEEE Photonics Technology Letters, 2020, 32, 166-169.	1.3	44

#	Article	IF	CITATIONS
55	Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity. Optics Letters, 2007, 32, 373.	1.7	43
56	An Ultra-Compact 3-dB Power Splitter for Three Modes Based on Pixelated Meta-Structure. IEEE Photonics Technology Letters, 2020, 32, 341-344.	1.3	43
57	Lead Halide Perovskiteâ€Based Dynamic Metasurfaces. Laser and Photonics Reviews, 2019, 13, 1900079.	4.4	42
58	Enhanced Multiphoton Processes in Perovskite Metasurfaces. Nano Letters, 2021, 21, 7191-7197.	4.5	40
59	Whispering-gallery-mode based CH ₃ NH ₃ PbBr ₃ perovskite microrod lasers with high quality factors. Materials Chemistry Frontiers, 2017, 1, 477-481.	3.2	39
60	Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 2022, 11, 1761-1781.	2.9	39
61	Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes. Physical Review A, 2013, 88, .	1.0	37
62	Postsynthetic and Selective Control of Lead Halide Perovskite Microlasers. Journal of Physical Chemistry Letters, 2016, 7, 3886-3891.	2.1	37
63	High-speed silicon photonic Mach–Zehnder modulator at 2Âμm. Photonics Research, 2021, 9, 535.	3.4	37
64	Giant blueshifts of excitonic resonances in two-dimensional lead halide perovskite. Nano Energy, 2017, 41, 320-326.	8.2	36
65	Darkâ€Field Sensors based on Organometallic Halide Perovskite Microlasers. Advanced Materials, 2018, 30, e1801481.	11.1	36
66	Massâ€Manufactural Lanthanideâ€Based Ultraviolet B Microlasers. Advanced Materials, 2019, 31, e1807079.	11.1	36
67	Dynamic Structural Colors Based on Allâ€Đielectric Mie Resonators. Advanced Optical Materials, 2021, 9, 2002126.	3.6	36
68	Subwavelength polarization splitter–rotator with ultra-compact footprint. Optics Letters, 2019, 44, 4495.	1.7	36
69	Robust and Broadband Optical Coupling by Topological Waveguide Arrays. Laser and Photonics Reviews, 2020, 14, 1900193.	4.4	35
70	Single Nanoparticle Detection Using Far-field Emission of Photonic Molecule around the Exceptional Point. Scientific Reports, 2015, 5, 11912.	1.6	35
71	Allâ€Ðielectric Metasurfaceâ€Enabled Multiple Vortex Emissions. Advanced Materials, 2022, 34, e2109255.	11.1	35
72	Design of a barcode-like waveguide nanostructure for efficient chip–fiber coupling. Photonics Research. 2016. 4. 209.	3.4	34

#	Article	IF	CITATIONS
73	Random laser emission from a surface-corrugated waveguide. Physical Review B, 2005, 72, .	1.1	33
74	Tunable perovskite microdisk lasers. Nanoscale, 2016, 8, 8717-8721.	2.8	32
75	Stable Whispering Gallery Mode Lasing from Solutionâ€Processed Formamidinium Lead Bromide Perovskite Microdisks. Advanced Optical Materials, 2020, 8, 2000030.	3.6	32
76	Extreme output sensitivity to subwavelength boundary deformation in microcavities. Physical Review A, 2013, 87, .	1.0	31
77	Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface. Plasmonics, 2016, 11, 537-541.	1.8	30
78	Lasing Action in Dye Doped Polymer Nanofiber Knot Resonator. Journal of Lightwave Technology, 2009, 27, 4374-4376.	2.7	29
79	Random lasing actions in self-assembled perovskite nanoparticles. Optical Engineering, 2016, 55, 057102.	0.5	29
80	Achieving Circularly Polarized Surface Emitting Perovskite Microlasers with All-Dielectric Metasurfaces. ACS Nano, 2020, 14, 17063-17070.	7.3	28
81	Ultra-Compact Mode-Division Multiplexed Photonic Integrated Circuit for Dual Polarizations. Journal of Lightwave Technology, 2021, 39, 5925-5932.	2.7	28
82	Intense directional lasing from a deformed square-shaped organic-inorganic hybrid glass microring cavity. Optics Letters, 2003, 28, 1784.	1.7	27
83	Photon hopping and nanowire based hybrid plasmonic waveguide and ring-resonator. Scientific Reports, 2015, 5, .	1.6	27
84	Inversely Designed 1 × 4 Power Splitter With Arbitrary Ratios at 2-μm Spectral Band. IEEE Photonics Journal, 2018, 10, 1-6.	1.0	27
85	Spin Angular Momentum Controlled Multifunctional Allâ€Dielectric Metasurface Doublet. Laser and Photonics Reviews, 2020, 14, 1900324.	4.4	27
86	Lead Halide Perovskite Nanoribbon Based Uniform Nanolaser Array on Plasmonic Grating. ACS Photonics, 2017, 4, 649-656.	3.2	26
87	Highly Efficient Silicon Photonic Microheater Based on Black Arsenic–Phosphorus. Advanced Optical Materials, 2020, 8, 1901526.	3.6	26
88	Inversed Vernier effect based single-mode laser emission in coupled microdisks. Scientific Reports, 2015, 5, 13682.	1.6	25
89	Transmission of IM/DD Signals at 2Âμm Wavelength Using PAM and CAP. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	24
90	Suppressing meta-holographic artifacts by laser coherence tuning. Light: Science and Applications, 2021, 10, 104.	7.7	24

#	Article	IF	CITATIONS
91	Narrow-band polarized light emission from organic microcavity fabricated by sol-gel technique. Applied Physics Letters, 2003, 82, 2939-2941.	1.5	23
92	Quasiparityâ€Time Symmetric Microdisk Laser. Laser and Photonics Reviews, 2017, 11, 1700052.	4.4	23
93	Dark plasmonic mode based perfect absorption and refractive index sensing. Nanoscale, 2017, 9, 8907-8912.	2.8	23
94	Transporting the Optical Chirality through the Dynamical Barriers in Optical Microcavities. Laser and Photonics Reviews, 2018, 12, 1800027.	4.4	22
95	Whispering-Gallery Mode Lasing in a Floating GaN Microdisk with a Vertical Slit. Scientific Reports, 2020, 10, 253.	1.6	22
96	Ultra-broadband 3  dB power splitter from 1.55 to 2  µm wave band. Optics Letters, 2021, 46,	4282.	22
97	Design of Mid-infrared electro-optic modulators based on aluminum nitride waveguides. Journal of Lightwave Technology, 2016, , 1-1.	2.7	21
98	Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films. ACS Applied Materials & Interfaces, 2017, 9, 20711-20718.	4.0	21
99	Controlling multimode coupling by boundary-wave scattering. Physical Review A, 2013, 88, .	1.0	20
100	Improving the Performance of a CH ₃ NH ₃ PbBr ₃ Perovskite Microrod Laser through Hybridization with Few‣ayered Graphene. Advanced Optical Materials, 2016, 4, 2057-2062.	3.6	20
101	High- <i>Q</i> and highly reproducible microdisks and microlasers. Nanoscale, 2018, 10, 2045-2051.	2.8	20
102	Switchable Random Laser From Dye-Doped Polymer Dispersed Liquid Crystal Waveguides. IEEE Journal of Quantum Electronics, 2007, 43, 407-410.	1.0	19
103	Highly directional output from long-lived resonances in optical microcavity. Optics Letters, 2011, 36, 103.	1.7	19
104	Highly Controllable Lasing Actions in Lead Halide Perovskite–Si ₃ N ₄ Hybrid Microâ€Resonators. Laser and Photonics Reviews, 2019, 13, 1800189.	4.4	19
105	Kerr Frequency Comb Interaction with Raman, Brillouin, and Second Order Nonlinear Effects. Laser and Photonics Reviews, 2022, 16, 2100184.	4.4	19
106	Inverse design of a dual-mode 3-dB optical power splitter with a 445â€nm bandwidth. Optics Express, 2022, 30, 26266.	1.7	19
107	Hybridizing CH ₃ NH ₃ PbBr ₃ microwires and tapered fibers for efficient light collection. Journal of Materials Chemistry A, 2016, 4, 8015-8019.	5.2	18
108	Maskless Fabrication of Aluminum Nanoparticles for Plasmonic Enhancement of Lead Halide Perovskite Lasers. Advanced Optical Materials, 2017, 5, 1700529.	3.6	18

#	Article	IF	CITATIONS
109	Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nature Communications, 2022, 13, 1727.	5.8	18
110	Ultracompact Orbital Angular Momentum Sorter on a CMOS Chip. Nano Letters, 2022, 22, 3993-3999.	4.5	18
111	Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption. Nanoscale, 2015, 7, 18914-18917.	2.8	17
112	High-Speed Traveling-Wave Modulator Based on Graphene and Microfiber. Journal of Lightwave Technology, 2018, 36, 4730-4735.	2.7	17
113	Direct observation of chaotic resonances in optical microcavities. Light: Science and Applications, 2021, 10, 135.	7.7	17
114	Selfâ€Cleaning Titanium Dioxide Metasurfaces with UV Irradiation. Laser and Photonics Reviews, 2021, 15, 2000330.	4.4	17
115	Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure. Journal of Biomedical Optics, 2010, 15, 060503.	1.4	16
116	Quasi-guiding Modes in Microfibers on a High Refractive Index Substrate. ACS Photonics, 2015, 2, 1278-1283.	3.2	16
117	Enhancing the Magnetic Resonance via Strong Coupling in Optical Metamaterials. Advanced Optical Materials, 2017, 5, 1700469.	3.6	16
118	Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas. Carbon, 2015, 94, 501-506.	5.4	15
119	Allâ€Dielectric Metaâ€Reflectarray for Efficient Control of Visible Light. Annalen Der Physik, 2018, 530, 1700418.	0.9	15
120	Optical Fiber Humidity Sensor Based on Water Absorption Peak Near 2-μm Waveband. IEEE Photonics Journal, 2019, 11, 1-8.	1.0	15
121	On hipâ€Integrated Methylammonium Halide Perovskite Optical Sensors. Advanced Optical Materials, 2019, 7, 1801308.	3.6	15
122	Polarization-independent metamaterial with broad ultrahigh refractive index in terahertz region. Optical Materials Express, 2015, 5, 1949.	1.6	14
123	The combination of high Q factor and chirality in twin cavities and microcavity chain. Scientific Reports, 2014, 4, 6493.	1.6	14
124	Enhanced second-harmonic generation from nonlinear optical metamagnetics. Optics Express, 2014, 22, 26613.	1.7	13
125	Coherent destruction of tunneling in chaotic microcavities via three-state anti-crossings. Scientific Reports, 2015, 4, 4858.	1.6	13
126	Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces. MRS Communications, 2016, 6, 77-83.	0.8	13

#	Article	IF	CITATIONS
127	Single Crystal Microrod Based Homonuclear Photonic Molecule Lasers. Advanced Optical Materials, 2017, 5, 1600744.	3.6	13
128	Singleâ€Crystalline Perovskite Microlasers for Highâ€Contrast and Subâ€Diffraction Imaging. Advanced Functional Materials, 2019, 29, 1904868.	7.8	13
129	Nanowire Waveguides and Lasers: Advances and Opportunities in Photonic Circuits. Frontiers in Chemistry, 2020, 8, 613504.	1.8	13
130	Tailoring the lasing modes in CH ₃ NH ₃ PbBr ₃ perovskite microplates via micro-manipulation. RSC Advances, 2016, 6, 50553-50558.	1.7	11
131	Chipâ€Scale Mass Manufacturable Highâ€ <i>Q</i> Silicon Microdisks. Advanced Materials Technologies, 2017, 2, 1600299.	3.0	11
132	Adiabatic and Ultracompact Waveguide Tapers Based on Digital Metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.	1.9	11
133	Fiber-Integrated Reversibly Wavelength-Tunable Nanowire Laser Based on Nanocavity Mode Coupling. ACS Nano, 2019, 13, 9965-9972.	7.3	11
134	Silicon photonic arrayed waveguide grating with 64 channels for the 2 µm spectral range. Optics Letters, 2022, 47, 1186.	1.7	11
135	Wavelength and intensity switching in directly coupled semiconductor microdisk lasers. Optics Letters, 2008, 33, 605.	1.7	10
136	Directional random-laser emission from Bragg gratings with irregular perturbation. Optics Letters, 2009, 34, 344.	1.7	10
137	Coherent destruction of dynamical tunneling in asymmetric resonant cavities. Physical Review A, 2013, 87, .	1.0	10
138	Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial. Optical Materials Express, 2015, 5, 1954.	1.6	10
139	Large-Scale and Defect-Free Silicon Metamaterials with Magnetic Response. Scientific Reports, 2016, 6, 25760.	1.6	10
140	Light confinement in a low-refraction-index microcavity bonded on a silicon substrate. Optica, 2016, 3, 937.	4.8	10
141	Synthesis of Amphiphilic Dye-Self-Assembled Mesostructured Powder Silica with Enhanced Emission for Directional Random Laser. Chemistry of Materials, 2008, 20, 3814-3820.	3.2	9
142	The combination of directional outputs and single-mode operation in circular microdisk with broken PT symmetry. Optics Express, 2015, 23, 24257.	1.7	9
143	Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis. Journal of Biomedical Optics, 2010, 15, 037011.	1.4	8
144	Direct modulation of microcavity emission via local perturbation. Physical Review A, 2013, 88, .	1.0	8

#	Article	IF	CITATIONS
145	Distributed Feedback Laser Based on Single Crystal Perovskite. Journal of Physics: Conference Series, 2017, 844, 012022.	0.3	8
146	Lanthanide-doped nanocrystals in high-Q microtoroids for stable on-chip white-light lasers. Photonics Research, 2022, 10, 1594.	3.4	8
147	Perturbation of Nanoparticle on Deformed Microcavity. Journal of Lightwave Technology, 2010, 28, 2818-2821.	2.7	7
148	Deformed microdisk coupled to a bus waveguide for applications in resonant filter. Optics Letters, 2014, 39, 1149.	1.7	7
149	Manipulation of High-Order Scattering Processes in Ultrasmall Optical Resonators to Control Far-Field Emission. Physical Review Letters, 2014, 112, 163902.	2.9	7
150	Improvement of the chirality near avoided resonance crossing in optical microcavity. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	7
151	The Role of Excitons on Light Amplification in Lead Halide Perovskites. Advanced Materials, 2016, 28, 10165-10169.	11.1	7
152	Dispersion engineering and measurement in crystalline microresonators using a fiber ring etalon. Photonics Research, 2021, 9, 2222.	3.4	7
153	Deformed Microdisk-Based End-Fire Injection and Collection Resonant Device. Journal of Lightwave Technology, 2015, 33, 3698-3703.	2.7	6
154	Optimization of one-third harmonic generation in the presence of nonlinear phase modulations and power attenuation. Optics Express, 2015, 23, 17407.	1.7	6
155	Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity. Photonics Research, 2021, 9, 364.	3.4	6
156	Review on unidirectional light emission from ultralow-loss modes in deformed microdisks. , 2011, , 109-152.		6
157	Scalable and Compact Silicon Mode Multiplexer Via Tilt Waveguide Junctions With Shallow Etched Slots. Journal of Lightwave Technology, 2022, 40, 4682-4688.	2.7	6
158	End-fire injection of guided light into optical microcavity. Applied Physics B: Lasers and Optics, 2015, 120, 255-260.	1.1	5
159	Enhancement of magnetic dipole emission at yellow light in optical metamaterials. Optics Communications, 2015, 350, 202-206.	1.0	5
160	Triangular lasing modes in hexagonal perovskite microplates with balanced gain and loss. RSC Advances, 2016, 6, 64589-64594.	1.7	5
161	Three-dimensional light confinement in a PT-symmetric nanocavity. RSC Advances, 2016, 6, 5792-5796.	1.7	5
162	Unidirectional emission from a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="script">P <mml:mi mathvariant="script">T</mml:mi> </mml:mi </mml:mrow> -symmetric annular microcavity. Physical Review A, 2019, 99, .</mml:math 	1.0	4

#	Article	IF	CITATIONS
163	A double-ring Mach–Zehnder interferometer sensor with high sensitivity. Journal Physics D: Applied Physics, 2012, 45, 255102.	1.3	3
164	Coupling the normal incident light into waveguide modes of DBR mirrors via a diffraction grating. Scientific Reports, 2016, 6, 38964.	1.6	3
165	The influence of grating shape formation fluctuation on DFB laser diode threshold condition. Optical Review, 2018, 25, 330-335.	1.2	3
166	Allâ€Optical Modulation of Microcavity Emission by Parityâ€Time Symmetry. Annalen Der Physik, 2020, 532, 2000133.	0.9	3
167	T-Branch Waveguide Mirror for Multimode Optical Splitter With Arbitrary Power Ratios. IEEE Journal of Quantum Electronics, 2021, 57, 1-6.	1.0	3
168	Demonstration of an ultra-compact bend for four modes based on pixelated meta-structure. , 2020, , .		3
169	Ultralowâ€ŧhreshold widebandâ€ŧunable singleâ€mode ultraviolet lasing from lanthanideâ€doped upconversion nanomaterials. Journal of the American Ceramic Society, 2022, 105, 5764-5773.	1.9	3
170	Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures. , 2010, , .		2
171	The impact of emission mechanisms on the long-lived states around avoided resonance crossings in chaotic microcavity. Optics Express, 2014, 22, 5086.	1.7	2
172	Experimental demonstration of PT-symmetric stripe lasers (Laser Photonics Rev. 10(4)/2016). Laser and Photonics Reviews, 2016, 10, 697-697.	4.4	2
173	Rapid and Nondestructive Determination of Graphene Thickness with an all Dielectric Metasurface. Plasmonics, 2017, 12, 1685-1691.	1.8	2
174	Analysis of third and one-third harmonic generation in lossy waveguides. Chinese Physics B, 2019, 28, 064206.	0.7	2
175	Ultra-compact and polarization-insensitive MMI coupler based on inverse design. , 2019, , .		2
176	Ultrafast Control of Microlasers. Optics and Photonics News, 2020, 31, 36.	0.4	2
177	Ultra-compact and broadband 3-dB power splitter based on subwavelength grating at 2-μm. , 2021, , .		2
178	Whispering gallery mode from dye-doped organic/inorganic hybrid microring cavity. , 2002, , .		1
179	Random lasers emission from surface-corrugated waveguide. , 2005, 5635, 450.		1
180	Magnetic Field Enhancement: Enhancing the Magnetic Resonance via Strong Coupling in Optical Metamaterials (Advanced Optical Materials 20/2017). Advanced Optical Materials, 2017, 5, .	3.6	1

#	Article	IF	CITATIONS
181	Perovskite Lasers: Highly Controllable Lasing Actions in Lead Halide Perovskite-Si3 N4 Hybrid Micro-Resonators (Laser Photonics Rev. 13(3)/2019). Laser and Photonics Reviews, 2019, 13, 1970018.	4.4	1
182	All-Dielectric Metasurface for Polarization-Insensitive Color Printing. , 2017, , .		1
183	Theoretical analysis on the enhancement of one-third harmonic generation in quasi-phase-matching schemes based on modal dispersion modulation. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1729.	0.9	1
184	Ultra-compact dual-mode Waveguide Bend based on an Inverse Design. , 2018, , .		1
185	Four-mode waveguide crossing via digitized meta-structure. , 2021, , .		1
186	Intense directional lasing from non-circular micro-ring cavities. , 0, , .		0
187	1.2 degree narrow divergence intense directional lasing from extremely deformed non-circular micro-ring cavities. , 2005, , .		Ο
188	Random Laser Emission from Surface-corrugated Waveguide. , 0, , .		0
189	Highly Collimated Lasing Emission from a Peanut-Shaped Micro-Cavity. , 2006, , .		Ο
190	Evanescent-Wave Pumped Microfiber Knot Laser. , 2007, , .		0
191	Liquid crystals based tunable high-Q directional random laser from a planar random microcavity. , 2007, , .		Ο
192	Tunable High-Q Directional Random Laser from a Planar Random Microcavity. , 2007, , .		0
193	High Quality Direct Photo-patterned Microdisk Lasers with Organic/Inorganic Hybrid Materials. , 2007, , .		0
194	Varying the Overlap of Direct-Coupling between Spiral and Semicircle Semiconductor Microdisk Lasers. , 2007, , .		0
195	Unidirectional laser emission from Limacon shaped microdisk. , 2008, , .		0
196	From random lasing to single-nanoparticle detection. , 2012, , .		0
197	Publisher's Note: Channeling Chaotic Rays into Waveguides for Efficient Collection of Microcavity Emission [Phys. Rev. Lett.108, 243902 (2012)]. Physical Review Letters, 2012, 109, .	2.9	0

High-Q whispering gallery mode directly on a silicon substrate. , 2016, , .

#	Article	IF	CITATIONS
199	High efficiency light conversion between micro- and nano-photonic circuits. Journal of Optics (United Kingdom), 2016, 18, 075009.	1.0	Ο
200	The 2-μm fully-etched silicon grating coupler. , 2017, , .		0
201	Efficient degenerate third-order difference frequency generation in microfiber-ring resonator systems. , 2017, , .		0
202	On-chip attenuators based on digitized all-silicon nanostructures. , 2018, , .		0
203	Ultra-broadband $1 ilde{A}$ —2 optical splitter based on integrated digital metamaterial. , 2018, , .		0
204	Facile microfluidic fabrication of monodispersed selfâ€coupling microcavity with fine tunability. Electrophoresis, 2020, 41, 1418-1424.	1.3	0
205	Millimeter-Long Silicon Photonic Antenna for Optical Phased Arrays at 2-μm Wavelength Band. IEEE Photonics Journal, 2021, 13, 1-7.	1.0	Ο
206	Highly efficient one-third harmonic generation under nonlinear phase mismatch modulating scheme realized in a microfiber ring cavity. Optics Communications, 2021, 487, 126794.	1.0	0
207	Mid-infrared tunable magnetic response in graphene-based diabolo nanoantennas. , 2015, , .		Ο
208	Absorption Enhancement in Thin-film Organic Solar Cells through Electric and Magnetic Resonances in Optical Metamaterial. , 2015, , .		0
209	Aluminum Nitride Electro-optic Modulator at Mid-IR Wavelengths. , 2015, , .		Ο
210	Design of random nanostructures for optical power splitter with arbitrary splitting ratio. , 2016, , .		0
211	Design of a random nanostructure for efficient chip-fiber polarization independent coupling. , 2016, , .		Ο
212	A hybrid system with highly enhanced graphene SERS for rapid and tag-free tumor cells detection. , 2017, , .		0
213	Highly Reproducible- Organometallic Halide Perovskite Microdevices Based on Top-Down Lithography. , 2017, , .		Ο
214	Organic-inorganic Lead Halide Perovskite CH3NH3PbBr3 Nanolaser Array based on Silicon Grating. , 2017, , .		0
215	Controlling the lasing and hybrid plasmonic lasering actions based on lead halide perovskite nanosheets at the bottom. , 2018, , .		0
216	Manifold-enhanced photon transportation in a chaotic microresonator. , 2019, , .		0

13

0

#	Article	IF	CITATIONS
217	Controlling the integrated micro-lasers with ultrahigh speed and ultralow energy consumption. , 2020, , .		0

218 Microdisk Lasers: Fundamental Physics and Practical Applications. , 2020, , 233-267.