
Jung-Woog Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7682890/publications.pdf Version: 2024-02-01

LUNC-WOOD SHIN

#	Article	IF	CITATIONS
1	Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and 3D printing polycaprolactone scaffolds using a rat model. Head and Neck, 2021, 43, 833-848.	2.0	15
2	Synergistic Effect of Growth Factor Releasing Polymeric Nanoparticles and Ultrasound Stimulation on Osteogenic Differentiation. Pharmaceutics, 2021, 13, 457.	4.5	2
3	Combined Application of Prototype Ultrasound and BSA-Loaded PLGA Particles for Protein Delivery. Pharmaceutical Research, 2021, 38, 1455-1466.	3.5	2
4	Alternative non-oral nutrition in a rat model: a novel modified gastrostomy technique. Experimental Animals, 2021, , .	1.1	0
5	Influences of sodium tantalite submicro-particles in polyetheretherketone based composites on behaviors of rBMSCs/HGE-1 cells for dental application. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110723.	5.0	9
6	A Platform for Studying of the Three-Dimensional Migration of Hematopoietic Stem/Progenitor Cells. Tissue Engineering and Regenerative Medicine, 2020, 17, 25-31.	3.7	3
7	Tissue-Engineered Graft for Circumferential Esophageal Reconstruction in Rats. Journal of Visualized Experiments, 2020, , .	0.3	2
8	The combined effects of hierarchical scaffolds and mechanical stimuli on <i>ex vivo</i> expansion of haematopoietic stem/progenitor cells. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 585-592.	2.8	13
9	Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction. Tissue Engineering - Part A, 2019, 25, 1478-1492.	3.1	23
10	Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites. Scientific Reports, 2018, 8, 174.	3.3	15
11	Characterization and osteogenic evaluation of mesoporous magnesium–calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping. RSC Advances, 2018, 8, 33882-33892.	3.6	9
12	Cyclic stretch increases mitochondrial biogenesis in a cardiac cell line. Biochemical and Biophysical Research Communications, 2018, 505, 768-774.	2.1	7
13	Synergistic Integration of Mesenchymal Stem Cells and Hydrostatic Pressure in the Expansion and Maintenance of Human Hematopoietic/Progenitor Cells. Stem Cells International, 2018, 2018, 1-12.	2.5	9
14	Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. International Journal of Nanomedicine, 2018, Volume 13, 1107-1117.	6.7	21
15	Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements. Materials Science and Engineering C, 2017, 75, 620-628.	7.3	26
16	Effects of mesoporous calcium magnesium silicate on setting time, compressive strength, apatite formation, degradability and cell behavior to magnesium phosphate based bone cements. RSC Advances, 2017, 7, 870-879.	3.6	14
17	Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells. Stem Cell Research and Therapy, 2017, 8, 139.	5.5	16
18	PCL/β-TCP Composite Scaffolds Exhibit Positive Osteogenic Differentiation with Mechanical Stimulation. Tissue Engineering and Regenerative Medicine, 2017, 14, 349-358.	3.7	34

JUNG-WOOG SHIN

#	Article	IF	CITATIONS
19	Mechanical stimuli modulate intracellular calcium oscillations: a pathological model without chemical cues. Biotechnology Letters, 2017, 39, 1121-1127.	2.2	Ο
20	The Effects of Epigallocatechin-3-Gallate and Mechanical Stimulation on Osteogenic Differentiation of Human Mesenchymal Stem Cells: Individual or Synergistic Effects. Tissue Engineering and Regenerative Medicine, 2017, 14, 307-315.	3.7	13
21	Simultaneous engagement of mechanical stretching and surface pattern promotes cardiomyogenic differentiation of human mesenchymal stem cells. Journal of Bioscience and Bioengineering, 2017, 123, 252-258.	2.2	14
22	Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate. International Journal of Nanomedicine, 2017, Volume 12, 3637-3651.	6.7	15
23	Promotion of in vivo degradability, vascularization and osteogenesis of calcium sulfate-based bone cements containing nanoporous lithium doping magnesium silicate. International Journal of Nanomedicine, 2017, Volume 12, 1341-1352.	6.7	27
24	Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL–PEG–PCL composite. International Journal of Nanomedicine, 2016, Volume 11, 3545-3555.	6.7	16
25	Distinguishing tendon and ligament fibroblasts based on 1H nuclear magnetic resonance spectroscopy. Tissue Engineering and Regenerative Medicine, 2016, 13, 677-683.	3.7	3
26	A three-dimensional hierarchical scaffold fabricated by a combined rapid prototyping technique and electrospinning process to expand hematopoietic stem/progenitor cells. Biotechnology Letters, 2016, 38, 175-181.	2.2	13
27	MG-63 osteoblast-like cell proliferation on auxetic PLGA scaffold with mechanical stimulation for bone tissue regeneration. Biomaterials Research, 2016, 20, 33.	6.9	15
28	Clinical Relevance and Molecular Phenotypes in Gastric Cancer, of TP53 Mutations and Gene Expressions, in Combination With Other Gene Mutations. Scientific Reports, 2016, 6, 34822.	3.3	24
29	Shear stress and circumferential stretch by pulsatile flow direct vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels. Journal of Materials Science: Materials in Medicine, 2016, 27, 60.	3.6	35
30	Changes, and the Relevance Thereof, in Mitochondrial Morphology during Differentiation into Endothelial Cells. PLoS ONE, 2016, 11, e0161015.	2.5	10
31	물리ì•ìşੋž¥ ìžê·¹ì—•ìĕ한 ì≌ٜ°ì,,,í•ìĕ ë¶,,화엕ëᠯMë°~ëĕ는 ë⁻,í†ì½~드리ì•,,ìĕ 특ì,,± 변화엕관한 ê³ì°°. Tiss	ue Brz gineo	ering and Rege
32	Effects of Flow-Induced Shear Stress on Limbal Epithelial Stem Cell Growth and Enrichment. PLoS ONE, 2014, 9, e93023.	2.5	19
33	Texture Analyses Show Synergetic Effects of Biomechanical and Biochemical Stimulation on Mesenchymal Stem Cell Differentiation into Early Phase Osteoblasts. Microscopy and Microanalysis, 2014, 20, 219-227.	0.4	7
34	Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stemÂcells. Journal of Bioscience and Bioengineering, 2014, 117, 242-247.	2.2	31
35	Effects of various patterns of intermittent hydrostatic pressure on the osteogenic differentiation of mesenchymal stem cells. Tissue Engineering and Regenerative Medicine, 2014, 11, 32-39.	3.7	3
36	Fabrication of biomimetic PCL scaffold using rapid prototyping for bone tissue engineering. Macromolecular Research, 2014, 22, 882-887.	2.4	22

JUNG-WOOG SHIN

#	Article	IF	CITATIONS
37	Mechanical stimulation and the presence of neighboring cells greatly affect migration of human mesenchymal stem cells. Biotechnology Letters, 2013, 35, 1817-1822.	2.2	9
38	The Effects on Flow-induced Shear Stress on the Maintenance of Stemness of Limbal Stem Cells. , 2012, , .		0
39	The Effects of Substrate Stiffness and Intermittent Hydrostatic Pressure during Osteogenic Differentiation. , 2012, , .		0
40	Effects of Combinational Stimulation on Differentiation of MSCs into Osteoblasts. , 2012, , .		1
41	Proton (1H) nuclear magnetic resonance spectroscopy to define metabolomic changes as a biomarker of adipogenic differentiation in human mesenchymal stem cells. Tissue Engineering and Regenerative Medicine, 2012, 9, 101-108.	3.7	6
42	Effects of intermittent hydrostatic pressure magnitude on the chondrogenesis of MSCs without biochemical agents under 3D co-culture. Journal of Materials Science: Materials in Medicine, 2012, 23, 2773-2781.	3.6	26
43	Combined Effects of Surface Morphology and Mechanical Straining Magnitudes on the Differentiation of Mesenchymal Stem Cells without Using Biochemical Reagents. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	35
44	Preparation of thermosensitive gelatin-pluronic copolymer for cartilage tissue engineering. Macromolecular Research, 2010, 18, 387-391.	2.4	32
45	Preparation and characterization of well ordered mesoporous diopside nanobiomaterial. , 2010, , .		0
46	<i>In Vitro</i> and Animal Study of Novel Nano-Hydroxyapatite/Poly(É›-Caprolactone) Composite Scaffolds Fabricated by Layer Manufacturing Process. Tissue Engineering - Part A, 2009, 15, 977-989.	3.1	52
47	Enhanced differentiation of mesenchymal stem cells into NP-like cells via 3D co-culturing with mechanical stimulation. Journal of Bioscience and Bioengineering, 2009, 108, 63-67.	2.2	39
48	Fabrication of Bioactive Scaffold of Poly(É>â€Caprolactone) and Nanofiber Wollastonite Composite. Journal of the American Ceramic Society, 2009, 92, 1017-1023.	3.8	30
49	Effects of intermittent hydrostatic pressure on cell adhesive forces and other related parameters under various resting periods. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 353-360.	3.4	11
50	Researches on Micro-Mechanical Environments in Relation to Cellular Biomechanics. The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2007, 2007.3, S3.	0.0	0
51	Surface modification of polyurethane using sulfonated PEC crafted polyrotaxane for improved biocompatibility. Macromolecular Research, 2006, 14, 73-80.	2.4	23
52	Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005, 26, 1261-1270.	11.4	586
53	An experimental study of nonlinear viscoelastic bushing model for axial mode. Journal of Mechanical Science and Technology, 2003, 17, 1324-1331.	0.4	2