
Wangxi Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7682329/publications.pdf Version: 2024-02-01

MANCYL FANC

#	Article	IF	CITATIONS
1	lonic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration. Frontiers of Chemical Science and Engineering, 2022, 16, 699-708.	2.3	1
2	Doubleâ€Defense Design of Superâ€Antiâ€Fouling Membranes for Oil/Water Emulsion Separation. Advanced Functional Materials, 2022, 32, .	7.8	129
3	Hydrophilic/hydrophobic nanofibres intercalated multilayer membrane with hierarchical structure for efficient oil/water separation. Separation and Purification Technology, 2022, 288, 120672.	3.9	14
4	Microporous polymer adsorptive membranes with high processing capacity for molecular separation. Nature Communications, 2022, 13, .	5.8	30
5	Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation. Journal of Membrane Science, 2021, 620, 118862.	4.1	118
6	Thin film composite structured Janus membrane for fast gravity-driven separation of a trace of blood. Journal of Membrane Science, 2021, 620, 118853.	4.1	14
7	Constructing Strong Interfacial Interactions under Mild Conditions in MOF-Incorporated Mixed Matrix Membranes for Gas Separation. ACS Applied Materials & Interfaces, 2021, 13, 3166-3174.	4.0	48
8	Metal ion cross-linked nanoporous polymeric membranes with improved organic solvent resistance for molecular separation. Journal of Membrane Science, 2021, 621, 119002.	4.1	24
9	Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	52
10	Pseudo-zwitterions self-assembled from polycation and anion clusters showing exceptional water-cleanable anti-crude-oil-adhesion property. IScience, 2021, 24, 102964.	1.9	4
11	Zwitterionic Nanohydrogels–Decorated Microporous Membrane with Ultrasensitive Salt Responsiveness for Controlled Water Transport. Small, 2020, 16, e1903925.	5.2	16
12	Thin-film composite hollow fibre membrane for low pressure organic solvent nanofiltration. Journal of Membrane Science, 2020, 597, 117760.	4.1	49
13	A Single-Walled Carbon Nanotube/Covalent Organic Framework Nanocomposite Ultrathin Membrane with High Organic Solvent Resistance for Molecule Separation. ACS Applied Materials & Interfaces, 2020, 12, 53096-53103.	4.0	30
14	Polyamide Thin Films Grown on PD/SWCNT-Interlayered-PTFE Microfiltration Membranes for High-Permeance Organic Solvent Nanofiltration. Industrial & Engineering Chemistry Research, 2020, 59, 22533-22540.	1.8	31
15	High-performance polyamide nanofiltration membrane with arch-bridge structure on a highly hydrated cellulose nanofiber support. Science China Materials, 2020, 63, 2570-2581.	3.5	35
16	A microporous polymer ultrathin membrane for the highly efficient removal of dyes from acidic saline solutions. Journal of Membrane Science, 2020, 603, 118027.	4.1	19
17	Ultrafast Ion Sieving from Honeycomb-like Polyamide Membranes Formed Using Porous Protein Assemblies. Nano Letters, 2020, 20, 5821-5829.	4.5	46
18	Ultrathin Membranes: A New Opportunity for Ultrafast and Efficient Separation. Advanced Materials Technologies, 2020, 5, 1901069.	3.0	37

Wangxi Fang

#	Article	IF	CITATIONS
19	Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination. Journal of Membrane Science, 2020, 600, 117874.	4.1	89
20	Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection. Journal of Membrane Science, 2020, 607, 118184.	4.1	30
21	Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation. Journal of Membrane Science, 2020, 608, 118201.	4.1	59
22	Ultrathin Nanofiltration Membrane from Confined Polymerization within the Nanowire Network for High Efficiency Divalent Cation Removal. ACS Macro Letters, 2019, 8, 1240-1246.	2.3	22
23	Ultrathin Polyamide Nanofiltration Membrane Fabricated on Brush-Painted Single-Walled Carbon Nanotube Network Support for Ion Sieving. ACS Nano, 2019, 13, 5278-5290.	7.3	268
24	Effects of the support on the characteristics and permselectivity of thin film composite membranes. Journal of Membrane Science, 2019, 580, 12-23.	4.1	88
25	Polymersomes-based high-performance reverse osmosis membrane for desalination. Journal of Membrane Science, 2018, 555, 177-184.	4.1	53
26	Module scale-up and performance evaluation of thin film composite hollow fiber membranes for pressure retarded osmosis. Journal of Membrane Science, 2018, 548, 398-407.	4.1	32
27	Ultralarge Single-Layer Porous Protein Nanosheet for Precise Nanosize Separation. Nano Letters, 2018, 18, 6563-6569.	4.5	44
28	Zwitterionic Nanohydrogel Grafted PVDF Membranes with Comprehensive Antifouling Property and Superior Cycle Stability for Oilâ€inâ€Water Emulsion Separation. Advanced Functional Materials, 2018, 28, 1804121.	7.8	379
29	Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers for enhanced organic fouling resistance. Journal of Membrane Science, 2015, 492, 147-155.	4.1	34
30	Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance. Journal of Membrane Science, 2015, 494, 68-77.	4.1	141
31	Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability. Journal of Membrane Science, 2014, 468, 52-61.	4.1	168
32	Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening. Journal of Membrane Science, 2013, 430, 129-139.	4.1	258
33	Fabrication of layer-by-layer assembled FO hollow fiber membranes and their performances using low concentration draw solutions. Desalination, 2013, 308, 147-153.	4.0	60
34	Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization. Journal of Membrane Science, 2012, 394-395, 140-150.	4.1	99
35	Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes. Journal of Membrane Science, 2011, 382, 116-123.	4.1	138