Kidong Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7682158/publications.pdf

Version: 2024-02-01

		377584	223390
50	2,657	21	49
papers	citations	h-index	g-index
50	50	50	6380
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highâ€density adherent culture of CHO cells using rolled scaffold bioreactor. Biotechnology and Bioengineering, 2022, 119, 1498-1508.	1.7	3
2	Polymorphic Ga ₂ S ₃ nanowires: phase-controlled growth and crystal structure calculations. Nanoscale Advances, 2022, 4, 3218-3225.	2.2	1
3	Anisotropic 2D SiAs for Highâ€Performance UV–Visible Photodetectors. Small, 2021, 17, e2006310.	5. 2	35
4	Development of rolled scaffold for high-density adherent cell culture. Biomedical Microdevices, 2020, 22, 4.	1.4	7
5	Phase Controlled Growth of Cd ₃ As ₂ Nanowires and Their Negative Photoconductivity. Nano Letters, 2020, 20, 4939-4946.	4.5	20
6	Nickel sulfide nanocrystals for electrochemical and photoelectrochemical hydrogen generation. Journal of Materials Chemistry C, 2020, 8, 3240-3247.	2.7	17
7	Static microdroplet array generated by spraying and analyzed with automated microscopy and image processing. Analytical Biochemistry, 2019, 587, 113452.	1.1	2
8	GaAsSe Ternary Alloy Nanowires for Enhanced Photoconductivity. Journal of Physical Chemistry C, 2019, 123, 3908-3915.	1.5	3
9	Nickel phosphide polymorphs with an active (001) surface as excellent catalysts for water splitting. CrystEngComm, 2019, 21, 1143-1149.	1.3	19
10	Two dimensional MoS2 meets porphyrins via intercalation to enhance the electrocatalytic activity toward hydrogen evolution. Nanoscale, 2019, 11, 3780-3785.	2.8	21
11	Thickness-dependent bandgap and electrical properties of GeP nanosheets. Journal of Materials Chemistry A, 2019, 7, 16526-16532.	5.2	45
12	Synthesis of Polytypic Gallium Phosphide and Gallium Arsenide Nanowires and Their Application as Photodetectors. ACS Omega, 2019, 4, 3098-3104.	1.6	12
13	Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals. Journal of Materials Chemistry A, 2019, 7, 22879-22883.	5.2	39
14	Moving shot, an affordable and high-throughput setup for direct imaging of fast-moving microdroplets. Microsystem Technologies, 2019, 25, 3417-3423.	1.2	3
15	Exosomes from Nischarin-Expressing Cells Reduce Breast Cancer Cell Motility and Tumor Growth. Cancer Research, 2019, 79, 2152-2166.	0.4	32
16	Quantum Dots Formed in Three-dimensional Dirac Semimetal Cd ₃ As ₂ Nanowires. Nano Letters, 2018, 18, 1863-1868.	4.5	16
17	Hollow microcarriers for largeâ€scale expansion of anchorageâ€dependent cells in a stirred bioreactor. Biotechnology and Bioengineering, 2018, 115, 1717-1728.	1.7	19
18	Strain Mapping and Raman Spectroscopy of Bent GaP and GaAs Nanowires. ACS Omega, 2018, 3, 3129-3135.	1.6	20

#	Article	IF	Citations
19	Orthorhombic NiSe ₂ Nanocrystals on Si Nanowires for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33198-33204.	4.0	49
20	Enhanced Moisture-Reactive Hydrophilic-PTFE-Based Flexible Humidity Sensor for Real-Time Monitoring. Sensors, 2018, 18, 921.	2.1	23
21	Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage. Soft Matter, 2017, 13, 4224-4230.	1.2	19
22	Bent Polytypic ZnSe and CdSe Nanowires Probed by Photoluminescence. Small, 2017, 13, 1603695.	5.2	15
23	Surface-Modified Ta ₃ N ₅ Nanocrystals with Boron for Enhanced Visible-Light-Driven Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36715-36722.	4.0	20
24	Cardiac Muscle-cell Based Actuator and Self-stabilizing Biorobot - PART 1. Journal of Visualized Experiments, 2017, , .	0.2	2
25	Multifrequency Optomechanical Stiffness Measurement of Single Adherent Cells on a Solid Substrate with High Throughput. Analytical Chemistry, 2017, 89, 10841-10849.	3.2	2
26	Cardiac Muscle Cell-based Actuator and Self-stabilizing Biorobot - Part 2. Journal of Visualized Experiments, 2017, , .	0.2	2
27	Measurement of cell traction force with a thin film PDMS cantilever. Biomedical Microdevices, 2017, 19, 97.	1.4	5
28	IrO ₂ â€"ZnO Hybrid Nanoparticles as Highly Efficient Trifunctional Electrocatalysts. Journal of Physical Chemistry C, 2017, 121, 14899-14906.	1.5	35
29	Integrated Cantilever-Based Biosensors for the Detection of Chemical and Biological Entities. , 2017, , 469-530.		0
30	Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. Journal of Physical Chemistry Letters, 2016, 7, 3703-3710.	2.1	202
31	Photoluminescence and Photocurrents of GaS _{1â€"<i>x</i>} Se _{<i>x</i>} Nanobelts. Chemistry of Materials, 2016, 28, 5811-5820.	3.2	28
32	Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots. Lab on A Chip, 2016, 16, 3473-3484.	3.1	39
33	Ultrasound synthesis of lead halide perovskite nanocrystals. Journal of Materials Chemistry C, 2016, 4, 10625-10629.	2.7	124
34	Zn ₂ GeO ₄ and Zn ₂ SnO ₄ nanowires for high-capacity lithium- and sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10691-10699.	5.2	77
35	CoSe ₂ and NiSe ₂ Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5327-5334.	4.0	425
36	Transition-Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution. Journal of Physical Chemistry C, 2015, 119, 1921-1927.	1.5	96

#	Article	IF	CITATIONS
37	Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Letters, 2015, 15, 5191-5199.	4.5	432
38	<i>In Situ</i> Temperature-Dependent Transmission Electron Microscopy Studies of Pseudobinary <i>m</i> GeTe·Bi ₂ Te ₃ (<i>m</i> = 3â€"8) Nanowires and First-Principles Calculations. Nano Letters, 2015, 15, 3923-3930.	4.5	12
39	Optomechanical measurement of the stiffness of single adherent cells. Lab on A Chip, 2015, 15, 3460-3464.	3.1	19
40	Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide. ACS Nano, 2015, 9, 9585-9593.	7.3	163
41	Ternary alloy nanocrystals of tin and germanium chalcogenides. RSC Advances, 2014, 4, 15695-15701.	1.7	21
42	Micro-Masonry of MEMS Sensors and Actuators. Journal of Microelectromechanical Systems, 2014, 23, 308-314.	1.7	14
43	GaP–ZnS Pseudobinary Alloy Nanowires. Nano Letters, 2014, 14, 5912-5919.	4.5	21
44	Band Gap Tuning of Twinned GaAsP Ternary Nanowires. Journal of Physical Chemistry C, 2014, 118, 4546-4552.	1.5	21
45	Directed cell growth and alignment on protein-patterned 3D hydrogels with stereolithography. Virtual and Physical Prototyping, 2012, 7, 219-228.	5.3	26
46	Hydrodynamic loading and viscous damping of patterned perforations on microfabricated resonant structures. Applied Physics Letters, 2012, 100 , .	1.5	5
47	Resonant MEMS Mass Sensors for Measurement of Microdroplet Evaporation. Journal of Microelectromechanical Systems, 2012, 21, 702-711.	1.7	60
48	Development of Miniaturized Walking Biological Machines. Scientific Reports, 2012, 2, 857.	1.6	197
49	Hydrogel Microstructures: Characterization of Mass and Swelling of Hydrogel Microstructures using MEMS Resonant Mass Sensor Arrays (Small 16/2012). Small, 2012, 8, 2450-2450.	5. 2	3
50	Measurement of adherent cell mass and growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20691-20696.	3.3	186