Dayong Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7682075/publications.pdf Version: 2024-02-01

		26567	19136
251	15,734	56	118
papers	citations	h-index	g-index
271	271	271	14107
all docs	docs citations	times ranked	citing authors

DAYONG LIN

#	Article	IF	CITATIONS
1	Controlling upconversion nanocrystals for emerging applications. Nature Nanotechnology, 2015, 10, 924-936.	15.6	1,221
2	Advances in highly doped upconversion nanoparticles. Nature Communications, 2018, 9, 2415.	5.8	793
3	Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photonics, 2014, 8, 32-36.	15.6	652
4	Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature, 2017, 543, 229-233.	13.7	643
5	Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nature Nanotechnology, 2013, 8, 729-734.	15.6	569
6	Large-area display textiles integrated with functional systems. Nature, 2021, 591, 240-245.	13.7	550
7	Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today, 2018, 19, 146-187.	6.2	453
8	Multicolor Barcoding in a Single Upconversion Crystal. Journal of the American Chemical Society, 2014, 136, 4893-4896.	6.6	348
9	Advances and challenges for fluorescence nanothermometry. Nature Methods, 2020, 17, 967-980.	9.0	333
10	Upconversion luminescence with tunable lifetime in NaYF ₄ :Yb,Er nanocrystals: role of nanocrystal size. Nanoscale, 2013, 5, 944-952.	2.8	327
11	Optical Nanomaterials and Enabling Technologies for Highâ€Securityâ€Level Anticounterfeiting. Advanced Materials, 2020, 32, e1901430.	11.1	305
12	Activation of the surface dark-layer to enhance upconversion in a thermal field. Nature Photonics, 2018, 12, 154-158.	15.6	270
13	Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nature Communications, 2016, 7, 10254.	5.8	267
14	New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light: Science and Applications, 2019, 8, 15.	7.7	263
15	Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coordination Chemistry Reviews, 2019, 381, 104-134.	9.5	252
16	Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. Small, 2017, 13, 1702299.	5.2	247
17	Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy / phototherapy. Biomaterials, 2020, 252, 120093.	5.7	210
18	Nanoparticles for super-resolution microscopy and single-molecule tracking. Nature Methods, 2018, 15, 415-423.	9.0	208

#	Article	IF	CITATIONS
19	808Ânm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd3+-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials, 2016, 101, 32-46.	5.7	177
20	Single-particle spectroscopy for functional nanomaterials. Nature, 2020, 579, 41-50.	13.7	167
21	High-sensitivity imaging of time-domain near-infrared light transducer. Nature Photonics, 2019, 13, 525-531.	15.6	166
22	Optimal Sensitizer Concentration in Single Upconversion Nanocrystals. Nano Letters, 2017, 17, 2858-2864.	4.5	159
23	Colorectal Tumor Microenvironmentâ€Activated Bioâ€Decomposable and Metabolizable Cu ₂ O@CaCO ₃ Nanocomposites for Synergistic Oncotherapy. Advanced Materials, 2020, 32, e2004647.	11.1	157
24	Heterogeneously Nd ³⁺ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry. Nanoscale, 2017, 9, 8288-8297.	2.8	147
25	Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems. Biomacromolecules, 2017, 18, 2231-2246.	2.6	147
26	Future and challenges for hybrid upconversion nanosystems. Nature Photonics, 2019, 13, 828-838.	15.6	145
27	Microscopic inspection and tracking of single upconversion nanoparticles in living cells. Light: Science and Applications, 2018, 7, 18007-18007.	7.7	141
28	Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nature Communications, 2018, 9, 3290.	5.8	136
29	On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nature Communications, 2014, 5, 3741.	5.8	135
30	MnO ₂ -Disguised Upconversion Hybrid Nanocomposite: An Ideal Architecture for Tumor Microenvironment-Triggered UCL/MR Bioimaging and Enhanced Chemodynamic Therapy. Chemistry of Materials, 2019, 31, 2651-2660.	3.2	131
31	Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small, 2018, 14, e1801882.	5.2	128
32	3D Printing of Inertial Microfluidic Devices. Scientific Reports, 2020, 10, 5929.	1.6	121
33	Time-Gated Luminescence Microscopy Allowing Direct Visual Inspection of Lanthanide-Stained Microorganisms in Background-Free Condition. Analytical Chemistry, 2011, 83, 2294-2300.	3.2	120
34	Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today, 2019, 26, 16-56.	6.2	113
35	Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Research, 2017, 10, 2070-2082. -	5.8	103
36	Ultrasensitive Ratiometric Nanothermometer with Large Dynamic Range and Photostability. Chemistry of Materials, 2019, 31, 9480-9487.	3.2	103

#	Article	IF	CITATIONS
37	A stoichiometric terbium-europium dyad molecular thermometer: energy transfer properties. Light: Science and Applications, 2018, 7, 96.	7.7	98
38	Quantitative Lateral Flow Strip Sensor Using Highly Doped Upconversion Nanoparticles. Analytical Chemistry, 2018, 90, 12356-12360.	3.2	98
39	An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation. Nature Materials, 2019, 18, 760-769.	13.3	94
40	Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology, 2012, 22, 1465-1479.	1.3	93
41	Super-resolution dipole orientation mapping via polarization demodulation. Light: Science and Applications, 2016, 5, e16166-e16166.	7.7	93
42	High-Contrast Visualization of Upconversion Luminescence in Mice Using Time-Gating Approach. Analytical Chemistry, 2016, 88, 3449-3454.	3.2	88
43	Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nature Communications, 2019, 10, 4694.	5.8	88
44	Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging. Journal of Materials Chemistry, 2009, 19, 1258.	6.7	87
45	Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nature Communications, 2020, 11, 3699.	5.8	78
46	Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nature Nanotechnology, 2021, 16, 531-537.	15.6	78
47	Upconversion Nanocrystalâ€Doped Glass: A New Paradigm for Photonic Materials. Advanced Optical Materials, 2016, 4, 1507-1517.	3.6	75
48	Mirror-enhanced super-resolution microscopy. Light: Science and Applications, 2016, 5, e16134-e16134.	7.7	74
49	Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology, 2011, 22, 325604.	1.3	73
50	Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coordination Chemistry Reviews, 2021, 429, 213642.	9.5	72
51	Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Advances, 2018, 8, 4842-4849.	1.7	69
52	The Quest for Optical Multiplexing in Bio-discoveries. CheM, 2018, 4, 997-1021.	5.8	65
53	Developing Red-Emissive Ruthenium(II) Complex-Based Luminescent Probes for Cellular Imaging. Bioconjugate Chemistry, 2012, 23, 725-733.	1.8	64
54	Ultrabright Eu–Doped Plasmonic Ag@SiO ₂ Nanostructures: Timeâ€gated Bioprobes with Single Particle Sensitivity and Negligible Background. Advanced Materials, 2011, 23, 4649-4654.	11.1	63

#	Article	IF	CITATIONS
55	Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging. Chemical Communications, 2008, , 365-367.	2.2	61
56	All-optical control and super-resolution imaging of quantum emitters in layered materials. Nature Communications, 2018, 9, 874.	5.8	60
57	Quantitatively Monitoring <i>In Situ</i> Mitochondrial Thermal Dynamics by Upconversion Nanoparticles. Nano Letters, 2021, 21, 1651-1658.	4.5	60
58	Recent Progress in DNA Hybridization Chain Reaction Strategies for Amplified Biosensing. ACS Applied Materials & Interfaces, 2021, 13, 38931-38946.	4.0	59
59	A Comprehensive Review on Intracellular Delivery. Advanced Materials, 2021, 33, e2005363.	11.1	58
60	Magnetoâ€Electrically Enhanced Intracellular Catalysis of FePtâ€FeC Heterostructures for Chemodynamic Therapy. Advanced Materials, 2021, 33, e2100472.	11.1	58
61	Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance inÂvitro and inÂvivo. Biomaterials, 2018, 155, 112-123.	5.7	57
62	Nanoarchitechtonics of Visibleâ€Blind Ultraviolet Photodetector Materials: Critical Features and Nanoâ€Microfabrication. Advanced Optical Materials, 2019, 7, 1800580.	3.6	57
63	High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nature Communications, 2020, 11, 5890.	5.8	56
64	One-Step Protein Conjugation to Upconversion Nanoparticles. Analytical Chemistry, 2015, 87, 10406-10413.	3.2	54
65	Emerging technologies for profiling extracellular vesicle heterogeneity. Lab on A Chip, 2020, 20, 2423-2437.	3.1	54
66	Point of Care Diagnostics in the Age of COVID-19. Diagnostics, 2021, 11, 9.	1.3	54
67	Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications. Journal Physics D: Applied Physics, 2006, 39, 461-465.	1.3	53
68	Preparation and Time-Resolved Luminescence Bioassay Application of Multicolor Luminescent Lanthanide Nanoparticles. Journal of Fluorescence, 2010, 20, 321-328.	1.3	53
69	Thermally enhanced NIR–NIR anti-Stokes emission in rare earth doped nanocrystals. Nanoscale, 2019, 11, 12547-12552.	2.8	53
70	Versatile Application of Fluorescent Quantum Dot Labels in Super-resolution Fluorescence Microscopy. ACS Photonics, 2016, 3, 1611-1618.	3.2	52
71	Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. Nanoscale, 2016, 8, 6837-6850.	2.8	52
72	Magnetically targeted delivery of DOX loaded Cu ₉ S ₅ @mSiO ₂ @Fe ₃ O ₄ -PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy. Nanoscale, 2016, 8, 12560-12569.	2.8	52

#	Article	IF	CITATIONS
73	Practical Implementation, Characterization and Applications of a Multi-Colour Time-Gated Luminescence Microscope. Scientific Reports, 2014, 4, 6597.	1.6	51
74	Rapid Softlithography Using 3Dâ€Printed Molds. Advanced Materials Technologies, 2019, 4, 1900425.	3.0	51
75	Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules, 2021, 22, 3168-3201.	2.6	51
76	Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement. Nature Communications, 2021, 12, 4367.	5.8	51
77	Photoluminescent and electrochemiluminescent dual-signaling probe for bio-thiols based on a ruthenium(II) complex. Analytica Chimica Acta, 2012, 740, 80-87.	2.6	49
78	Low threshold lasing emissions from a single upconversion nanocrystal. Nature Communications, 2020, 11, 6156.	5.8	49
79	Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release. Materials Science and Engineering C, 2015, 56, 473-480.	3.8	45
80	Anisotropic functionalization of upconversion nanoparticles. Chemical Science, 2018, 9, 4352-4358.	3.7	45
81	High intensity solid-state UV source for time-gated luminescence microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 1020-1027.	1.1	43
82	Development of a functional ruthenium(ii) complex for probing hypochlorous acid in living cells. Dalton Transactions, 2014, 43, 8414.	1.6	43
83	Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery. Dalton Transactions, 2016, 45, 1708-1716.	1.6	43
84	Background free imaging of upconversion nanoparticle distribution in human skin. Journal of Biomedical Optics, 2012, 18, 061215.	1.4	42
85	Probing the Interior Crystal Quality in the Development of More Efficient and Smaller Upconversion Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 3252-3258.	2.1	42
86	Gradient-sized control of tumor spheroids on a single chip. Lab on A Chip, 2019, 19, 4093-4103.	3.1	42
87	Development of a Visible-Light-Sensitized Europium Complex for Time-Resolved Fluorometric Application. Analytical Chemistry, 2010, 82, 2529-2535.	3.2	40
88	New Class of Tetradentate β-Diketonate-Europium Complexes That Can Be Covalently Bound to Proteins for Time-Gated Fluorometric Application. Bioconjugate Chemistry, 2012, 23, 1244-1251.	1.8	39
89	Multifunctional luminescent nanomaterials from NaLa(MoO4)2:Eu3+/Tb3+ with tunable decay lifetimes, emission colors and enhanced cell viability. Scientific Reports, 2015, 5, 11844.	1.6	39
90	Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles. Nanoscale, 2018, 10, 6270-6276.	2.8	39

#	Article	IF	CITATIONS
91	Structured illumination microscopy using digital micro-mirror device and coherent light source. Applied Physics Letters, 2020, 116, .	1.5	39
92	3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation. Applied Materials Today, 2020, 20, 100726.	2.3	38
93	Upconversion Nonlinear Structured Illumination Microscopy. Nano Letters, 2020, 20, 4775-4781.	4.5	38
94	Preparation and time-gated luminescence bioimaging applications of long wavelength-excited silica-encapsulated europium nanoparticles. Nanoscale, 2012, 4, 3551.	2.8	37
95	Achieving λ/10 Resolution CW STED Nanoscopy with a Ti:Sapphire Oscillator. PLoS ONE, 2012, 7, e40003.	1.1	37
96	Background-free in-vivo Imaging of Vitamin C using Time-gateable Responsive Probe. Scientific Reports, 2015, 5, 14194.	1.6	37
97	Depth-profiling of Yb ³⁺ sensitizer ions in NaYF ₄ upconversion nanoparticles. Nanoscale, 2017, 9, 7719-7726.	2.8	36
98	Phenanthriplatin(<scp>iv</scp>) conjugated multifunctional up-converting nanoparticles for drug delivery and biomedical imaging. Journal of Materials Chemistry B, 2018, 6, 5059-5068.	2.9	36
99	808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite. Dalton Transactions, 2016, 45, 13061-13069.	1.6	35
100	Exonuclease III-Assisted Upconversion Resonance Energy Transfer in a Wash-Free Suspension DNA Assay. Analytical Chemistry, 2018, 90, 663-668.	3.2	35
101	Nanorods with multidimensional optical information beyond the diffraction limit. Nature Communications, 2020, 11, 6047.	5.8	35
102	Mammary Tumor Organoid Culture in Nonâ€Adhesive Alginate for Luminal Mechanics and Highâ€Throughput Drug Screening. Advanced Science, 2021, 8, e2102418.	5.6	35
103	Up-conversion hybrid nanomaterials for light- and heat-driven applications. Progress in Materials Science, 2021, 121, 100838.	16.0	34
104	Responsive Sensors of Upconversion Nanoparticles. ACS Sensors, 2021, 6, 4272-4282.	4.0	34
105	Practical timeâ€gated luminescence flow cytometry. II: Experimental evaluation using UV LED excitation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 797-808.	1.1	33
106	Time-gated flow cytometry: an ultra-high selectivity method to recover ultra-rare-event μ-targets in high-background biosamples. Journal of Biomedical Optics, 2009, 14, 024023.	1.4	33
107	A supramolecular self-assembly strategy for upconversion nanoparticle bioconjugation. Chemical Communications, 2018, 54, 3851-3854.	2.2	33
108	Enhanced Flow Cytometry-Based Bead Immunoassays Using Metal Nanostructures. Analytical Chemistry, 2009, 81, 7248-7255.	3.2	32

#	Article	IF	CITATIONS
109	Superâ€Resolution Mapping of Single Nanoparticles inside Tumor Spheroids. Small, 2020, 16, e1905572.	5.2	32
110	Networking State of Ytterbium lons Probing the Origin of Luminescence Quenching and Activation in Nanocrystals. Advanced Science, 2021, 8, 2003325.	5.6	31
111	Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. Journal of Materials Chemistry A, 2019, 7, 13629-13634.	5.2	30
112	Preparation and time-gated luminescence bioimaging application of ruthenium complex covalently bound silica nanoparticles. Talanta, 2009, 79, 103-108.	2.9	29
113	Reversible and Sensitive Hg2+ Detection by a Cell-Permeable Ytterbium Complex. Inorganic Chemistry, 2018, 57, 120-128.	1.9	29
114	Europium Chelate (BHHCT-Eu ³⁺) and Its Metal Nanostructure Enhanced Luminescence Applied to Bioassays and Time-Gated Bioimaging. Langmuir, 2010, 26, 10036-10043.	1.6	28
115	Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. Nanoscale, 2020, 12, 18595-18599.	2.8	28
116	Emission stability and reversibility of upconversion nanocrystals. Journal of Materials Chemistry C, 2016, 4, 9227-9234.	2.7	27
117	Sensitive Time-Gated Immunoluminescence Detection of Prostate Cancer Cells Using a TEGylated Europium Ligand. Analytical Chemistry, 2016, 88, 9564-9571.	3.2	27
118	Helix Shape Power-Dependent Properties of Single Upconversion Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 2883-2890.	2.1	27
119	Preselectable Optical Fingerprints of Heterogeneous Upconversion Nanoparticles. Nano Letters, 2021, 21, 7659-7668.	4.5	27
120	Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication, 2022, 14, 015006.	3.7	27
121	Enhancing Hybrid Upconversion Nanosystems via Synergistic Effects of Moiety Engineered NIR Dyes. Nano Letters, 2021, 21, 9862-9868.	4.5	26
122	Practical timeâ€gated luminescence flow cytometry. I: Concepts. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 783-796.	1.1	25
123	Time-Gated Orthogonal Scanning Automated Microscopy (OSAM) for High-speed Cell Detection and Analysis. Scientific Reports, 2012, 2, 837.	1.6	25
124	Stable Upconversion Nanohybrid Particles for Specific Prostate Cancer Cell Immunodetection. Scientific Reports, 2016, 6, 37533.	1.6	25
125	MEMS piezoresistive flow sensors for sleep apnea therapy. Sensors and Actuators A: Physical, 2018, 279, 577-585.	2.0	25
126	Application of Exonuclease III-Aided Target Recycling in Flow Cytometry: DNA Detection Sensitivity Enhanced by Orders of Magnitude. Analytical Chemistry, 2013, 85, 8240-8245.	3.2	24

#	Article	IF	CITATIONS
127	Developing novel methods to image and visualize 3D genomes. Cell Biology and Toxicology, 2018, 34, 367-380.	2.4	24
128	Heterochromatic Nonlinear Optical Responses in Upconversion Nanoparticles for Superâ€Resolution Nanoscopy. Advanced Materials, 2021, 33, e2008847.	11.1	24
129	How to Build a Timeâ€Gated Luminescence Microscope. Current Protocols in Cytometry, 2014, 67, 2.22.1-2.22.36.	3.7	23
130	Double-Sensitive Drug Release System Based on MnO ₂ Assembled Upconversion Nanoconstruct for Double-Model Guided Chemotherapy. ACS Applied Nano Materials, 2018, 1, 1648-1656.	2.4	23
131	Automated detection of rareâ€event pathogens through timeâ€gated luminescence scanning microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 349-355.	1.1	22
132	Controlled Synthesis, Evolution Mechanisms, and Luminescent Properties of ScF _{<i>x</i>} :Ln (<i>x</i> = 2.76, 3) Nanocrystals. Chemistry of Materials, 2017, 29, 9758-9766.	3.2	22
133	Single Small Extracellular Vesicle (sEV) Quantification by Upconversion Nanoparticles. Nano Letters, 2022, 22, 3761-3769.	4.5	22
134	Obstacle-free planar hybrid micromixer with lowÂpressure drop. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	21
135	Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 1640.	0.8	20
136	Upconversion nanoparticles loaded with eIF4E siRNA and platinum(<scp>iv</scp>) prodrug to sensitize platinum based chemotherapy for laryngeal cancer and bioimaging. Journal of Materials Chemistry B, 2017, 5, 307-317.	2.9	20
137	Super-resolution fluorescence polarization microscopy. Journal of Innovative Optical Health Sciences, 2018, 11, 1730002.	0.5	19
138	Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization. Nanoscale, 2012, 4, 7448.	2.8	18
139	Bispecific Antibody-Functionalized Upconversion Nanoprobe. Analytical Chemistry, 2018, 90, 3024-3029.	3.2	18
140	High Spatial and Temporal Resolution NIR-IIb Gastrointestinal Imaging in Mice. Nano Letters, 2022, 22, 2793-2800.	4.5	18
141	Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information. Nanoscale, 2018, 10, 19757-19765.	2.8	17
142	Unidirectional intercellular communication on a microfluidic chip. Biosensors and Bioelectronics, 2021, 175, 112833.	5.3	17
143	A Portable RT-LAMP/CRISPR Machine for Rapid COVID-19 Screening. Biosensors, 2021, 11, 369.	2.3	17
144	Calibration beads containing luminescent lanthanide ion complexes. Journal of Biomedical Optics, 2009, 14, 024022.	1.4	16

#	Article	IF	CITATIONS
145	Resolving Low-Expression Cell Surface Antigens by Time-Gated Orthogonal Scanning Automated Microscopy. Analytical Chemistry, 2012, 84, 9674-9678.	3.2	16
146	Taking Plasmonic Core–Shell Nanoparticles Toward Laser Threshold. Journal of Physical Chemistry C, 2012, 116, 7546-7551.	1.5	16
147	Topological nanophotonics for photoluminescence control. Nanophotonics, 2020, 10, 435-441.	2.9	16
148	Power-Dependent Optimal Concentrations of Tm ³⁺ and Yb ³⁺ in Upconversion Nanoparticles. Journal of Physical Chemistry Letters, 2022, 13, 5316-5323.	2.1	16
149	Nanoparticles give mice infrared vision. Nature Photonics, 2019, 13, 304-305.	15.6	15
150	Highly Doped Upconversion Nanoparticles for <i>In Vivo</i> Applications Under Mild Excitation Power. Analytical Chemistry, 2020, 92, 10913-10919.	3.2	15
151	Optimizing the Polymer Cloak for Upconverting Nanoparticles: An Evaluation of Bioactivity and Optical Performance. ACS Applied Materials & Interfaces, 2021, 13, 16142-16154.	4.0	15
152	Frequency-domain diagonal extension imaging. Advanced Photonics, 2020, 2, 1.	6.2	14
153	Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells. Light: Science and Applications, 2022, 11, 4.	7.7	14
154	Demonstration of trueâ€color highâ€contrast microorganism imaging for terbium bioprobes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 392-397.	1.1	13
155	A versatile upconversion surface evaluation platform for bio–nano surface selection for the nervous system. Nanoscale, 2017, 9, 13683-13692.	2.8	13
156	Direct cation exchange of surface ligand capped upconversion nanocrystals to produce strong luminescence. Chemical Communications, 2018, 54, 9587-9590.	2.2	13
157	Axial localization and tracking of self-interference nanoparticles by lateral point spread functions. Nature Communications, 2021, 12, 2019.	5.8	13
158	Stable and Highly Efficient Antibody–Nanoparticles Conjugation. Bioconjugate Chemistry, 2021, 32, 1146-1155.	1.8	13
159	Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles. Coordination Chemistry Reviews, 2022, 469, 214653.	9.5	13
160	Laser oblique scanning optical microscopy (LOSOM) for phase relief imaging. Optics Express, 2012, 20, 14100.	1.7	12
161	Triplet state brightens upconversion. Nature Photonics, 2018, 12, 378-379.	15.6	12
162	Coding and decoding stray magnetic fields for multiplexing kinetic bioassay platform. Lab on A Chip, 2020, 20, 4561-4571.	3.1	12

#	Article	IF	CITATIONS
163	Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for <i>in Vivo</i> Imaging. ACS Nano, 2021, 15, 19924-19937.	7.3	12
164	Background-free Cytometry Using Rare Earth Complex Bioprobes. Methods in Cell Biology, 2011, 102, 479-513.	0.5	11
165	Bright future for upconversion. Nature Photonics, 2016, 10, 567-569.	15.6	11
166	Plasmonic platform based on nanoporous alumina membranes: order control <i>via</i> self-assembly. Journal of Materials Chemistry A, 2019, 7, 9565-9577.	5.2	11
167	NIR-II emissive properties of 808Ânm-excited lanthanide-doped nanoparticles for multiplexed in vivo imaging. Journal of Luminescence, 2022, 242, 118597.	1.5	11
168	Aspect Ratio of PEGylated Upconversion Nanocrystals Affects the Cellular Uptake In Vitro and In Vivo. Acta Biomaterialia, 2022, 147, 403-413.	4.1	11
169	Tuning Enhancement Efficiency of Multiple Emissive Centers in Graphene Quantum Dots by Core–Shell Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 5673-5679.	2.1	10
170	One-Step Loading of Gold and Gd ₂ O ₃ Nanoparticles within PEGylated Polyethylenimine for Dual Mode Computed Tomography/Magnetic Resonance Imaging of Tumors. ACS Applied Bio Materials, 2018, 1, 221-225.	2.3	10
171	A homogeneous DNA assay by recovering inhibited emission of rare earth ions-doped upconversion nanoparticles. Journal of Rare Earths, 2019, 37, 11-18.	2.5	10
172	PCR-free paper-based nanobiosensing platform for visual detection of telomerase activity via gold enhancement. Microchemical Journal, 2020, 154, 104594.	2.3	10
173	Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning. Journal of Physical Chemistry Letters, 2021, 12, 10242-10248.	2.1	10
174	DNA-mediated anisotropic silica coating of upconversion nanoparticles. Chemical Communications, 2018, 54, 7183-7186.	2.2	9
175	Taking upconversion to lase in microcavity. Nature Nanotechnology, 2018, 13, 534-536.	15.6	9
176	CRAFT: Multimodality confocal skin imaging for early cancer diagnosis. Journal of Biophotonics, 2012, 5, 469-476.	1.1	8
177	High-throughput 3-dimensional time-resolved spectroscopy: simultaneous characterisation of luminescence properties in spectral and temporal domains. RSC Advances, 2013, 3, 8670.	1.7	8
178	Upconversion nanoparticles coated with molecularly imprinted polymers for specific sensing. Dalton Transactions, 2020, 49, 17200-17206.	1.6	8
179	Tn5-FISH, a novel cytogenetic method to image chromatin interactions with sub-kilobase resolution. Journal of Genetics and Genomics, 2020, 47, 727-734.	1.7	8
180	Improving capture efficiency of human cancer cell derived exosomes with nanostructured metal organic framework functionalized beads. Applied Materials Today, 2021, 23, 100994.	2.3	8

#	Article	IF	CITATIONS
181	A cost-effective analog method to produce time-gated luminescence images. Proceedings of SPIE, 2012, ,	0.8	6
182	Anticounterfeiting Systems: Optical Nanomaterials and Enabling Technologies for Highâ€Securityâ€Level Anticounterfeiting (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070141.	11.1	6
183	Prevention of Neurite Spine Loss Induced by Dopamine D2 Receptor Overactivation in Striatal Neurons. Frontiers in Neuroscience, 2020, 14, 642.	1.4	6
184	Entropy-driven strand displacement reaction for ultrasensitive detection of circulating tumor DNA based on upconversion and Fe3O4 nanocrystals. Science China Materials, 2021, 64, 2593-2600.	3.5	6
185	Starch–borate–graphene oxide nanocomposites as highly efficient targeted antitumor drugs. RSC Advances, 2015, 5, 94855-94858.	1.7	5
186	3D Rotationâ€Trackable and Differentiable Micromachines with Dimerâ€Type Structures for Dynamic Bioanalysis. Advanced Intelligent Systems, 2021, 3, 2000205.	3.3	5
187	Reconstructing the Surface Structure of NaREF ₄ Upconversion Nanocrystals with a Novel K ⁺ Treatment. Chemistry of Materials, 2021, 33, 2548-2556.	3.2	5
188	Axially overlapped multi-focus light sheet with enlarged field of view. Applied Physics Letters, 2021, 118, 223701.	1.5	5
189	Upconversion Nanoparticleâ€assisted Singleâ€molecule Assay for Detecting Circulating Antigens of Aggressive Prostate Cancer. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, , .	1.1	5
190	Volume-preserving strategies to improve the mixing efficiency of serpentine micromixers. Journal of Micromechanics and Microengineering, 2020, 30, 115022.	1.5	5
191	Controlling the Biological Behaviors of Polymer-Coated Upconverting Nanoparticles by Adjusting the Linker Length of Estrone Ligands. Biomacromolecules, 2022, 23, 2572-2585.	2.6	5
192	Ultrasensitive time-resolved nanoliter volume fluorometry based on UV LEDs and a channel photomultiplier tube. , 2005, 5699, 237.		4
193	Observation of mesenteric microcirculatory disturbance in rat by laser oblique scanning optical microscopy. Scientific Reports, 2013, 3, 1762.	1.6	4
194	Off-axis gyration induces large-area circular motion of anisotropic microparticles in a dynamic magnetic trap. Applied Physics Letters, 2021, 119, .	1.5	4
195	Ratiometric 4Pi single-molecule localization with optimal resolution and color assignment. Optics Letters, 2022, 47, 325.	1.7	4
196	Giant nonlinearity in upconversion nanoparticles. Nature Photonics, 2022, 16, 553-554.	15.6	4
197	Schlieren confocal microscopy for phase-relief imaging. Optics Letters, 2014, 39, 1238.	1.7	3
198	High-Precision Pinpointing of Luminescent Targets in Encoder-Assisted Scanning Microscopy Allowing High-Speed Quantitative Analysis. Analytical Chemistry, 2016, 88, 1312-1319.	3.2	3

#	Article	IF	CITATIONS
199	BHHST: An improved lanthanide chelate for time-resolved fluorescence applications. , 2005, 5704, 93.		2
200	UV LED excited time-gated luminescence flow cytometry: concepts and experimental evaluation. , 2006, , .		2
201	Time-gated real-time bioimaging system using multicolor microsecond-lifetime silica nanoparticles. , 2010, , .		2
202	Plasmonic Ag/SiO 2 composite nanoparticles doped with europium chelate and their metal enhanced fluorescence. Proceedings of SPIE, 2011, , .	0.8	2
203	Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. , 2012, , .		2
204	Sensitive detection of NaYF4: Yb/Tm nanoparticles using suspended core microstructured optical fibers. , 2013, , .		2
205	Triplet Fusion Upconversion with Oxygen Resistance in Aqueous Media. Analytical Chemistry, 2021, 93, 4641-4646.	3.2	2
206	Dark bridge at the interface of hybrid nanosystem: Lanthanide-triplet NIR photosensitization. CheM, 2021, 7, 1412-1414.	5.8	2
207	Advances and enabling technologies for phase-specific cell cycle synchronisation. Lab on A Chip, 2022, 22, 445-462.	3.1	2
208	UV LED excited time-gated luminescence flow cytometry: evaluation for rare-event particle counting. Proceedings of SPIE, 2008, , .	0.8	1
209	Calibration beads containing luminescent lanthanide ion complexes. Proceedings of SPIE, 2008, , .	0.8	1
210	Seed mediated one-pot growth of versatile heterogeneous upconversion nanocrystals for multimodal bioimaging. , 2016, , .		1
211	Polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors. , 2016, , .		1
212	"Perspective―– A new approach to serve our Light community. Light: Science and Applications, 2018, 7, 89.	7.7	1
213	Low-Temperature-Induced Controllable Transversal Shell Growth of NaLnF4 Nanocrystals. Nanomaterials, 2021, 11, 654.	1.9	1
214	Intracellular Delivery: A Comprehensive Review on Intracellular Delivery (Adv. Mater. 13/2021). Advanced Materials, 2021, 33, 2170103.	11.1	1
215	Upconversion Nanoparticles: Heterochromatic Nonlinear Optical Responses in Upconversion Nanoparticles for Superâ€Resolution Nanoscopy (Adv. Mater. 23/2021). Advanced Materials, 2021, 33, 2170182.	11.1	1

216 Characterisation of Upconversion Nanoparticles for Imaging. , 2013, , .

#	Article	IF	CITATIONS
217	STED3D: point spread function simulation for high numerical aperture objective and resolution evaluation. , 2013, , .		1
218	Upconversion Nanocrystals Doped Glass: A New Paradigm for Integrated Optical Glass. , 2016, , .		1
219	Structured illumination microscopy using digital micromirror device and coherent light source. , 2020, , .		1
220	Advanced optical properties of upconversion nanoparticles. , 2023, , 613-648.		1
221	High-contrast detection of target organisms in highly autofluorescent backgrounds using time-resolved techniques. , 2005, , .		0
222	Investigation of UV LED luminescence properties for time-resolved fluorescence biomedical applications. , 2005, , .		0
223	Silver nanostructure coated beads enhance fluorescence for sensitive immunoassays and bioimaging. , 2010, , .		Ο
224	Mechanisms of size-dependent lifetime quenching in luminescent upconverting colloidal NaYF <inf>4</inf> :Yb, Er nanocrystals. , 2011, , .		0
225	Advances in lanthanide bioprobes and high-throughput background-free biophotonics sensing. , 2011, , \cdot		Ο
226	Nanoscale plasmonic resonators with high Purcell factor: spontaneous and stimulated emission. , 2011, , .		0
227	Long-Lifetime Luminescent Nanobioprobes for Advanced Cytometry Biosensing. , 2011, , 333-362.		0
228	Cytometric investigation of rare-events featuring time-gated detection and high-speed stage scanning. , 2011, , .		0
229	Confocal Reflectance/Auto-Fluorescence Tomograpy (CRAFT) for Early Skin Cancer Diagnosis. , 2012, , .		Ο
230	CW STED nanoscopy with a Ti:Sapphire oscillator. , 2012, , .		0
231	Orthogonal Scanning Automated Microscopy Speeds Up Time-Gated Luminescence Detection. , 2013, , .		0
232	Upconversion SuperDots. , 2014, , .		0
233	Rapid detection of rare-event cell by SUPER Dots based diagnostics nano-platform. Journal of Controlled Release, 2015, 213, e11-e12.	4.8	0
234	Super-resolution fluorescence dipole orientation microscopy. , 2016, , .		0

#	Article	IF	CITATIONS
235	Versatile upconversion surfaces evaluation platform for bio-nano surface selection for nervous system. , 2017, , .		0
236	Microfluidics: Rapid Softlithography Using 3Dâ€Printed Molds (Adv. Mater. Technol. 10/2019). Advanced Materials Technologies, 2019, 4, 1970056.	3.0	0
237	Enhanced Super-Resolution Imaging of Quantum Emitters in Hexagonal Boron Nitride. , 2019, , .		0
238	Cancer Spheroids: Superâ€Resolution Mapping of Single Nanoparticles inside Tumor Spheroids (Small) Tj ETQq0	0 0 rgBT /	Overlock 10
239	Topology-controlled Polarized Photoluminescence from Rare-earth Doped Nanocrystals. , 2021, , .		0
240	Rotating Micromachines with Stratified Disk Architecture for Dynamic Bioanalysis. Engineering Proceedings, 2021, 4, .	0.4	0
241	Topological nanophotonics for photoluminescence control. , 2021, , 447-454.		0
242	LOSOM: phase relief imaging can be achieved with confocal system. Proceedings of SPIE, 2012, , .	0.8	0
243	Characterisation of Upconversion Nanoparticles for Imaging. , 2013, , .		0
244	Stimulated emission depletion point spread function generation with vector solution. , 2013, , .		0
245	Mirror Enhanced STED Super-resolution Microscopy. , 2017, , .		0
246	Long-term ultra-low-level power STED nanoscopy. , 2017, , .		0
247	Advances in single particle tracking in living cells. Chinese Optics, 2018, 11, 281-295.	0.2	0
248	Upconversion nanoparticles assisted multi-photon fluorescence saturation microscopy. , 2019, , .		0
249	Deep tissue super-resolution microscopy mapping single nanoparticles inside multicellular spheroids. , 2020, , .		0
250	Super-resolution fluorescence polarization microscopy and its biological applications. , 2021, , .		0
251	Aspect Ratio of PEGylated Upconversion Nanocrystals Affects the Cellular Uptake. SSRN Electronic Journal, 0, , .	0.4	0