Franziska Koebsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7681828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications, 2020, 11, 1644.	12.8	168
2	Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 2015, 204, 94-105.	4.8	67
3	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	9.5	59
4	High net CO ₂ and CH ₄ release at a eutrophic shallow lake on a formerly drained fen. Biogeosciences, 2016, 13, 3051-3070.	3.3	56
5	From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach. Soil Systems, 2020, 4, 14.	2.6	45
6	Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions. Biogeosciences, 2018, 15, 6519-6536.	3.3	38
7	Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190524.	4.0	35
8	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	4.8	33
9	Vegetation controls methane emissions in a coastal brackish fen. Wetlands Ecology and Management, 2013, 21, 323-337.	1.5	31
10	Interdisciplinary Geoâ€ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENOâ€NE). Vadose Zone Journal, 2018, 17, 1-25.	2.2	29
11	Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland. Biogeosciences, 2019, 16, 1937-1953.	3.3	29
12	Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Global Change Biology, 2020, 26, 876-887.	9.5	25
13	The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190685.	4.0	25
14	Spatial Variability of Annual Estimates of Methane Emissions in a Phragmites Australis (Cav.) Trin. ex Steud. Dominated Restored Coastal Brackish Fen. Wetlands, 2014, 34, 593-602.	1.5	23
15	CO ₂ exchange of a temperate fen during the conversion from moderately rewetting to flooding. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 940-950.	3.0	21
16	The climate benefits of topsoil removal and <scp><i>Sphagnum</i></scp> introduction in raised bog restoration. Restoration Ecology, 2022, 30, e13490.	2.9	16
17	Congruent changes in microbial community dynamics and ecosystem methane fluxes following natural drought in two restored fens. Soil Biology and Biochemistry, 2021, 160, 108348.	8.8	15
18	Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO ₂ sink function. Biogeosciences, 2021, 18, 917-935.	3.3	13