
Nobutaka Fujieda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7681740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Consideration of Electrostatic Interaction of Charged Molecules with Partially Overlapped Electric Field: Zwitterions and Proteins. Electrochemistry, 2021, 89, 290-295.	1.4	2
2	His-Cys and Trp-Cys cross-links generated by post-translational chemical modification. Bioscience, Biotechnology and Biochemistry, 2020, 84, 445-454.	1.3	6
3	Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes. Angewandte Chemie - International Edition, 2020, 59, 7717-7720.	13.8	10
4	Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes. Angewandte Chemie, 2020, 132, 7791-7794.	2.0	0
5	Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angewandte Chemie - International Edition, 2020, 59, 13385-13390.	13.8	57
6	Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angewandte Chemie, 2020, 132, 13487-13492.	2.0	18
7	Tyrosinases in Organic Chemistry: A Versatile Tool for the αâ€Arylation of βâ€Dicarbonyl Compounds. European Journal of Organic Chemistry, 2018, 2018, 1789-1796.	2.4	6
8	Generation and characterisation of a stable nickel(ii)-aminoxyl radical complex. Dalton Transactions, 2017, 46, 8013-8016.	3.3	6
9	A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase. Journal of the American Chemical Society, 2017, 139, 5149-5155.	13.7	26
10	Geometric effects on O O bond scission of copper(II)-alkylperoxide complexes. Journal of Inorganic Biochemistry, 2017, 177, 375-383.	3.5	13
11	Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand. Inorganic Chemistry, 2017, 56, 9634-9645.	4.0	34
12	Controlling Dicopper Protein Functions. Bulletin of the Chemical Society of Japan, 2016, 89, 733-742.	3.2	17
13	Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding. Chemical Science, 2015, 6, 4060-4065.	7.4	26
14	Direct Hydroxylation of Benzene to Phenol Using Hydrogen Peroxide Catalyzed by Nickel Complexes Supported by Pyridylalkylamine Ligands. Journal of the American Chemical Society, 2015, 137, 5867-5870.	13.7	160
15	Generation, Characterization, and Reactivity of a Cu ^{II} –Alkylperoxide/Anilino Radical Complex: Insight into the O–O Bond Cleavage Mechanism. Journal of the American Chemical Society, 2015, 137, 10870-10873.	13.7	29
16	Redox Chemistry of Nickel(II) Complexes Supported by a Series of Noninnocent β-Diketiminate Ligands. Inorganic Chemistry, 2014, 53, 6159-6169.	4.0	33
17	Crystal Structures of Copper-depleted and Copper-bound Fungal Pro-tyrosinase. Journal of Biological Chemistry, 2013, 288, 22128-22140.	3.4	72
18	Activation mechanism of melB tyrosinase from Aspergillus oryzae by acidic treatment. Journal of Biological Inorganic Chemistry, 2013, 18, 19-26.	2.6	14

Nobutaka Fujieda

#	Article	IF	CITATIONS
19	Heterolytic Alkyl Hydroperoxide O–O Bond Cleavage by Copper(I) Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 4099-4103.	2.0	24
20	Copper(I)â€Dioxygen Reactivity in a Sterically Demanding Tripodal Tetradentate tren Ligand: Formation and Reactivity of a Mononuclear Copper(II) Endâ€On Superoxo Complex. European Journal of Inorganic Chemistry, 2012, 2012, 4574-4578.	2.0	41
21	Artificial Dicopper Oxidase: Rational Reprogramming of Bacterial Metalloâ€Î²â€lactamase into a Catechol Oxidase. Chemistry - an Asian Journal, 2012, 7, 1203-1207.	3.3	21
22	Multifunctions of MelB, a Fungal Tyrosinase from <i>Aspergillus oryzae</i> . ChemBioChem, 2012, 13, 193-201.	2.6	27
23	Post-Translational His-Cys Cross-Linkage Formation in Tyrosinase Induced by Copper(II)â^'Peroxo Species. Journal of the American Chemical Society, 2011, 133, 1180-1183.	13.7	30
24	Five monomeric hemocyanin subunits from Portunus trituberculatus: Purification, spectroscopic characterization, and quantitative evaluation of phenol monooxygenase activity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2128-2135.	2.3	17
25	Catalytic oxygenation of phenols by arthropod hemocyanin, an oxygen carrier protein, from Portunus trituberculatus. Dalton Transactions, 2010, 39, 3083.	3.3	21
26	The Silent Form of Quinohemoprotein Amine Dehydrogenase from <i>Paracoccus denitrificans</i> . Bioscience, Biotechnology and Biochemistry, 2009, 73, 524-529.	1.3	4
27	Bioelectrochemical Determination at Histamine Dehydrogenase-based Electrodes. Electrochemistry, 2008, 76, 600-602.	1.4	9
28	Production of Completely Flavinylated Histamine Dehydrogenase, Unique Covalently Bound Flavin, and Iron–Sulfur Cluster-Containing Enzyme ofNocardioides simplexinEscherichia coli, and Its Properties. Bioscience, Biotechnology and Biochemistry, 2005, 69, 2459-2462.	1.3	12
29	6-S-Cysteinyl Flavin Mononucleotide-Containing Histamine Dehydrogenase from Nocardioides simplex: Molecular Cloning, Sequencing, Overexpression, and Characterization of Redox Centers of Enzyme. Biochemistry, 2004, 43, 10800-10808.	2.5	37
30	Separator-less One-compartment Bulk Electrolysis with a Small Auxiliary Electrode and its Application to Spectroelectrochemistry. Electrochemistry, 2004, 72, 484-486.	1.4	5
31	Redox properties of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1647, 289-296.	2.3	7
32	Spectroelectrochemical Evaluation of Redox Potentials of Cysteine Tryptophylquinone and Two Hemes c in Quinohemoprotein Amine Dehydrogenase from Paracoccus denitrificans. Biochemistry, 2002, 41, 13736-13743.	2.5	22