Duane D Winkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7681472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Histone Chaperone FACT: Structural Insights and Mechanisms for Nucleosome Reorganization. Journal of Biological Chemistry, 2011, 286, 18369-18374.	3.4	181
2	Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7774-7779.	7.1	159
3	Histone Chaperone FACT Coordinates Nucleosome Interaction through Multiple Synergistic Binding Events. Journal of Biological Chemistry, 2011, 286, 41883-41892.	3.4	129
4	Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 197-201.	7.1	122
5	Yeast CAF-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition. Nucleic Acids Research, 2012, 40, 10139-10149.	14.5	66
6	Disrupted Zinc-Binding Sites in Structures of Pathogenic SOD1 Variants D124V and H80R. Biochemistry, 2010, 49, 5714-5725.	2.5	50
7	Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. Journal of Biological Chemistry, 2017, 292, 12025-12040.	3.4	48
8	Structural and Biophysical Properties of the Pathogenic SOD1 Variant H46R/H48Q. Biochemistry, 2009, 48, 3436-3447.	2.5	45
9	Oxygen-dependent activation of Cu,Zn-superoxide dismutase-1. Metallomics, 2017, 9, 1047-1059.	2.4	38
10	Quantifying Chromatin-Associated Interactions. Methods in Enzymology, 2012, 512, 243-274.	1.0	28
11	Copper–zinc superoxide dismutase (Sod1) activation terminates interaction between its copper chaperone (Ccs) and the cytosolic metal-binding domain of the copper importer Ctr1. BioMetals, 2019, 32, 695-705.	4.1	27
12	The yeast copper chaperone for copper-zinc superoxide dismutase (CCS1) is a multifunctional chaperone promoting all levels of SOD1 maturation. Journal of Biological Chemistry, 2019, 294, 1956-1966.	3.4	22
13	Copper Sources for Sod1 Activation. Antioxidants, 2020, 9, 500.	5.1	21
14	The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. Journal of Biological Chemistry, 2021, 297, 101314.	3.4	21
15	Mutations in Superoxide Dismutase 1 (Sod1) Linked to Familial Amyotrophic Lateral Sclerosis Can Disrupt High-Affinity Zinc-Binding Promoted by the Copper Chaperone for Sod1 (Ccs). Molecules, 2020, 25, 1086.	3.8	19
16	Fluorescent Functionalization across Quaternary Structure in a Virus-like Particle. Bioconjugate Chemistry, 2017, 28, 2277-2283.	3.6	17
17	Quantifying the Interaction between Copper-Zinc Superoxide Dismutase (Sod1) and its Copper Chaperone (Ccs1). Journal of Proteomics and Bioinformatics, 2018, 11, .	0.4	16
18	"The Defined Toxin-binding Region of the Cadherin G-protein Coupled Receptor, BT-R1, for the Active Cry1Ab Toxin of Bacillus thuringiensis― Journal of Proteomics and Bioinformatics, 2018, 11, 201-210.	0.4	8

DUANE D WINKLER

#	Article	IF	CITATIONS
19	Using FRET to measure the time it takes for a cell to destroy a virus. Nanoscale, 2020, 12, 9124-9132.	5.6	6
20	Interaction of Fluorescently Labeled Cadherin G Protein-coupled Receptor with the Cry1Ab Toxin of Bacillus thuringiensis. Journal of Proteomics and Bioinformatics, 2018, 11, .	0.4	4
21	Yeast CAF-1 assembles histone (H3-H4) 2 tetramers prior to DNA deposition. Nucleic Acids Research, 2017, 45, 9811-9812.	14.5	3
22	Functional and Structural Analysis of the Toxin-Binding Site of the Cadherin G-Protein-Coupled Receptor, BT-R ₁ , for Cry1A Toxins of <i>Bacillus thuringiensis</i> . Biochemistry, 2022, 61, 752-766.	2.5	3