Jia-jia Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7681319/publications.pdf

Version: 2024-02-01

33	2,161	23 h-index	31
papers	citations		g-index
34	34	34	2887
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Conductive Lewis Base Matrix to Recover the Missing Link of Li ₂ S ₈ during the Sulfur Redox Cycle in Li–S Battery. Chemistry of Materials, 2015, 27, 2048-2055.	3.2	326
2	Highly reduced and protonated aqueous solutions of [P2W18O62]6∠for on-demand hydrogen generation and energy storage. Nature Chemistry, 2018, 10, 1042-1047.	6.6	199
3	Exploring and Understanding the Roles of Li2Sn and the Strategies to beyond Present Li-S Batteries. CheM, 2020, 6, 2533-2557.	5.8	148
4	A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Physical Chemistry Chemical Physics, 2012, 14, 5376.	1.3	143
5	Highâ€Performance Polyoxometalateâ€Based Cathode Materials for Rechargeable Lithiumâ€Ion Batteries. Advanced Materials, 2015, 27, 4649-4654.	11.1	136
6	Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nature Communications, 2022, 13, 202.	5.8	128
7	Strategies to Explore and Develop Reversible Redox Reactions of Li–S in Electrode Architectures Using Silver-Polyoxometalate Clusters. Journal of the American Chemical Society, 2018, 140, 3134-3138.	6.6	117
8	Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochimica Acta, 2010, 55, 7010-7015.	2.6	112
9	Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction. Nature Catalysis, 2018, 1, 208-213.	16.1	97
10	An Amorphous Carbon Nitride Composite Derived from ZIFâ€8 as Anode Material for Sodiumâ€ion Batteries. ChemSusChem, 2015, 8, 1856-1861.	3.6	91
11	Self-Sorting of Heteroanions in the Assembly of Cross-Shaped Polyoxometalate Clusters. Journal of the American Chemical Society, 2018, 140, 2595-2601.	6.6	62
12	Defects Engineering of Lightweight Metal–Organic Frameworks-Based Electrocatalytic Membrane for High-Loading Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 13803-13813.	7.3	62
13	Design and Performance of Rechargeable Sodium Ion Batteries, and Symmetrical Liâ€lon Batteries with Supercapacitorâ€like Power Density Based upon Polyoxovanadates. Advanced Energy Materials, 2018, 8, 1701021.	10.2	58
14	The Intrinsic Charge Carrier Behaviors and Applications of Polyoxometalate Clusters Based Materials. Advanced Materials, 2021, 33, e2005019.	11.1	58
15	Assembly of Thiometalateâ€Based {Mo ₁₆ } and {Mo ₃₆ } Composite Clusters Combining [Mo ₂ O ₂ S ₂] ²⁺ Cations and Selenite Anions. Advanced Materials, 2013, 25, 6245-6249.	11.1	54
16	A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities. Chemical Science, 2018, 9, 1621-1626.	3.7	48
17	Tuning Redox Active Polyoxometalates for Efficient Electronâ€Coupled Protonâ€Bufferâ€Mediated Water Splitting. Chemistry - A European Journal, 2019, 25, 11432-11436.	1.7	40
18	Effective Storage of Electrons in Water by the Formation of Highly Reduced Polyoxometalate Clusters. Journal of the American Chemical Society, 2022, 144, 8951-8960.	6.6	37

#	Article	IF	Citations
19	Hierarchical structure LiFePO ₄ @C synthesized by oleylamine-mediated method for low temperature applications. Journal of Materials Chemistry A, 2014, 2, 4870-4873.	5.2	33
20	Two-Step Hydrothermal Method for Synthesis of Sulfur-Graphene Hybrid and its Application in Lithium Sulfur Batteries. Journal of the Electrochemical Society, 2012, 159, A1236-A1239.	1.3	29
21	Enhanced electrochemical performance and thermal stability of LiNi _{0.5} Mn _{1.5} O ₄ using an electrolyte with sulfolane. Physical Chemistry Chemical Physics, 2015, 17, 10353-10357.	1.3	29
22	Electrochemical Performance of the LiNi[sub $1/3$]Co[sub $1/3$]Mn[sub $1/3$]O[sub 2] in Aqueous Electrolyte. Journal of the Electrochemical Society, 2010, 157, A702.	1.3	27
23	A polyoxometalate-based polymer electrolyte with an improved electrode interface and ion conductivity for high-safety all-solid-state batteries. Journal of Materials Chemistry A, 2019, 7, 15924-15932.	5.2	27
24	Polyvinyl pyrrolidone-assisted synthesis of a Fe3O4/graphene composite with excellent lithium storage properties. RSC Advances, 2014, 4, 6379.	1.7	21
25	Assembly of inorganic [Mo ₂ S ₂ O ₂] ²⁺ panels connected by selenite anions to nanoscale chalcogenide–polyoxometalate clusters. Chemical Science, 2016, 7, 3798-3804.	3.7	20
26	Recent Advances on Polyoxometalateâ€Based Ionâ€Conducting Electrolytes for Energyâ€Related Devices. Energy and Environmental Materials, 2023, 6, .	7.3	20
27	POM Anolyte for Allâ€Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH. Advanced Materials, 2022, 34, e2107425.	11.1	18
28	Revisiting the Stability of the Cr ⁴⁺ /Cr ³⁺ Redox Couple in Sodium Superionic Conductor Compounds. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28313-28319.	4.0	8
29	Hybrid covalent organic-framework-based electrolytes for optimizing interface resistance in solid-state lithium-ion batteries. Cell Reports Physical Science, 2022, 3, 100731.	2.8	6
30	A carbon-based material with a hierarchical structure and intrinsic heteroatom sites for sodium-ion storage with ultrahigh rate and capacity. Nanoscale, 2021, 13, 15731-15742.	2.8	3
31	Selfâ€Supporting 3D Lithiophilic and Flexible Carbon Nanofiber Film as a High‣oading Li Host. Advanced Energy and Sustainability Research, 0, , 2100186.	2.8	3
32	Supercapacitors: Design and Performance of Rechargeable Sodium Ion Batteries, and Symmetrical Liâ€lon Batteries with Supercapacitorâ€Like Power Density Based upon Polyoxovanadates (Adv. Energy Mater.) Tj ETQq	0 0100 ng BT	i/Overlock 10
33	Revealing the Effect of Nickel Nanoparticles for Li Plating and Stripping Processes on Niâ^'N x Doped Hollow Carbon Sphere. ChemElectroChem, 2021, 8, 3832.	1.7	O