Eva-Maria Strasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7681240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutritional supplementation alters associations between one-carbon metabolites and cardiometabolic risk profiles in older adults: a secondary analysis of the Vienna Active Ageing Study. European Journal of Nutrition, 2022, 61, 169-182.	3.9	3
2	Effects of an increased habitual dietary protein intake followed by resistance training on fitness, muscle quality and body composition of seniors: A randomised controlled trial. Clinical Nutrition, 2022, 41, 1034-1045.	5.0	7
3	Effects of Vitamin D3 Supplementation and Resistance Training on 25-Hydroxyvitamin D Status and Functional Performance of Older Adults: A Randomized Placebo-Controlled Trial. Nutrients, 2022, 14, 86.	4.1	11
4	The Effect of Elevated Protein Intake on DNA Damage in Older People: Comparative Secondary Analysis of Two Randomized Controlled Trials. Nutrients, 2021, 13, 3479.	4.1	4
5	Chromosomal stability in buccal cells was linked to age but not affected by exercise and nutrients - Vienna Active Ageing Study (VAAS), a randomized controlled trial. Redox Biology, 2020, 28, 101362.	9.0	11
6	Strength training increases skeletal muscle quality but not muscle mass in old institutionalized adults: a randomized, multi-arm parallel and controlled intervention study. European Journal of Physical and Rehabilitation Medicine, 2019, 54, 921-933.	2.2	22
7	Fat Soluble Vitamins in Institutionalized Elderly and the Effect of Exercise, Nutrition and Cognitive Training on Their Status—The Vienna Active Aging Study (VAAS): A Randomized Controlled Trial. Nutrients, 2019, 11, 1333.	4.1	11
8	Effects of acute resistance exercise on proteolytic and myogenic markers in skeletal muscles of former weightlifters and age-matched sedentary controls. Journal of Sports Medicine and Physical Fitness, 2019, 59, 1915-1924.	0.7	4
9	Age and the effect of exercise, nutrition and cognitive training on oxidative stress – The Vienna Active Aging Study (VAAS), a randomized controlled trial. Free Radical Biology and Medicine, 2018, 121, 69-77.	2.9	18
10	Elastic band resistance training influences transforming growth factor-ß receptor I mRNA expression in peripheral mononuclear cells of institutionalised older adults: the Vienna Active Ageing Study (VAAS). Immunity and Ageing, 2016, 13, 22.	4.2	9
11	Muscle mass, strength and functional outcomes in critically ill patients after cardiothoracic surgery: does neuromuscular electrical stimulation help? The Catastim 2 randomized controlled trial. Critical Care, 2016, 20, 30.	5.8	81
12	Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). European Journal of Applied Physiology, 2016, 116, 885-897.	2.5	74
13	The effect of six months of elastic band resistance training, nutritional supplementation or cognitive training on chromosomal damage in institutionalized elderly. Experimental Gerontology, 2015, 65, 16-22.	2.8	36
14	Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Experimental Gerontology, 2015, 64, 35-45.	2.8	54
15	Effects of elastic band resistance training and nutritional supplementation on physical performance of institutionalised elderly — A randomized controlled trial. Experimental Gerontology, 2015, 72, 99-108.	2.8	71
16	The impact of six months strength training, nutritional supplementation or cognitive training on DNA damage in institutionalised elderly. Mutagenesis, 2015, 30, 147-153.	2.6	27
17	Influence of age and physical fitness on miRNA-21, TGF-β and its receptors in leukocytes of healthy women. Exercise Immunology Review, 2015, 21, 154-63.	0.4	19
18	The influence of age and aerobic fitness on chromosomal damage in Austrian institutionalised elderly. Mutagenesis, 2014, 29, 441-445.	2.6	19

EVA-MARIA STRASSER

#	Article	IF	CITATIONS
19	Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age, 2013, 35, 2377-2388.	3.0	308
20	Going in deeper and deeper: signal transduction pathways in myofacial trigger points – A narrative review. International Musculoskeletal Medicine, 2011, 33, 64-74.	0.1	1
21	Neuromuscular Electrical Stimulation Reduces Skeletal Muscle Protein Degradation and Stimulates Insulin-Like Growth Factors in an Age- and Current-Dependent Manner. Annals of Surgery, 2009, 249, 738-743.	4.2	53
22	Supply of R-α-lipoic acid and glutamine to casein-fed mice influences the number of B lymphocytes and tissue glutathione levels during endotoxemia. Wiener Klinische Wochenschrift, 2006, 118, 100-107.	1.9	6
23	The relationship between the anti-inflammatory effects of curcumin and cellular glutathione content in myelomonocytic cells. Biochemical Pharmacology, 2005, 70, 552-559.	4.4	76
24	Glycine—an inert amino acid comes alive. Nutrition, 2003, 19, 817-818.	2.4	15
25	Effect of single and combined supply of glutamine, glycine, N-acetylcysteine, and R,S-α-lipoic acid on glutathione content of myelomonocytic cells. Clinical Nutrition, 2003, 22, 515-522.	5.0	30
26	Regulative potential of glutamine—relation to glutathione metabolism. Nutrition, 2002, 18, 217-221.	2.4	180