Robert Knowles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7681206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews, 2022, 122, 2017-2291.	23.0	211
2	Ir(III)-Naphthoquinone complex as a platform for photocatalytic activity. Journal of Photochemistry and Photobiology, 2022, 9, 100098.	1.1	2
3	Contra-Thermodynamic Positional Isomerization of Olefins. Journal of the American Chemical Society, 2022, 144, 137-144.	6.6	34
4	lon-pair reorganization regulates reactivity in photoredox catalysts. Nature Chemistry, 2022, 14, 746-753.	6.6	28
5	Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes. Chemical Science, 2021, 12, 3898-3910.	3.7	47
6	Intermolecular Crossed [2 + 2] Cycloaddition Promoted by Visible-Light Triplet Photosensitization: Expedient Access to Polysubstituted 2-Oxaspiro[3.3]heptanes. Journal of the American Chemical Society, 2021, 143, 4055-4063.	6.6	39
7	Mechanistic Investigation and Optimization of Photoredox Anti-Markovnikov Hydroamination. Journal of the American Chemical Society, 2021, 143, 10232-10242.	6.6	28
8	Depolymerization of Hydroxylated Polymers via Light-Driven C–C Bond Cleavage. Journal of the American Chemical Society, 2021, 143, 12268-12277.	6.6	56
9	1,3â€Alkyl Transposition in Allylic Alcohols Enabled by Proton oupled Electron Transfer. Angewandte Chemie, 2021, 133, 20352-20357.	1.6	3
10	1,3â€Alkyl Transposition in Allylic Alcohols Enabled by Proton oupled Electron Transfer. Angewandte Chemie - International Edition, 2021, 60, 20190-20195.	7.2	29
11	PCET-Based Ligand Limits Charge Recombination with an Ir(III) Photoredox Catalyst. Journal of the American Chemical Society, 2021, 143, 13034-13043.	6.6	20
12	Light-Driven Depolymerization of Native Lignin Enabled by Proton-Coupled Electron Transfer. ACS Catalysis, 2020, 10, 800-805.	5.5	82
13	Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chemical Science, 2020, 11, 11124-11141.	3.7	116
14	Photocatalytic Generation of Aminium Radical Cations for C–N Bond Formation. ACS Catalysis, 2020, 10, 11712-11738.	5.5	93
15	Enantioselective Hydroamination of Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2020, 142, 5974-5979.	6.6	91
16	Catalytic Hydroetherification of Unactivated Alkenes Enabled by Protonâ€Coupled Electron Transfer. Angewandte Chemie - International Edition, 2020, 59, 11845-11849.	7.2	56
17	Catalytic Hydroetherification of Unactivated Alkenes Enabled by Proton oupled Electron Transfer. Angewandte Chemie, 2020, 132, 11943-11947.	1.6	15
18	C–H Alkylation via Multisite-Proton-Coupled Electron Transfer of an Aliphatic C–H Bond. Journal of the American Chemical Society, 2019, 141, 13253-13260.	6.6	100

ROBERT KNOWLES

#	Article	IF	CITATIONS
19	Light - driven deracemization enabled by excited - state electron transfer. Science, 2019, 366, 364-369.	6.0	188
20	Anti-Markovnikov Hydroamination of Unactivated Alkenes with Primary Alkyl Amines. Journal of the American Chemical Society, 2019, 141, 16590-16594.	6.6	81
21	Understanding Chemoselectivity in Proton-Coupled Electron Transfer: A Kinetic Study of Amide and Thiol Activation. Journal of the American Chemical Society, 2019, 141, 16574-16578.	6.6	26
22	Rate–Driving Force Relationships in the Multisite Proton-Coupled Electron Transfer Activation of Ketones. Journal of the American Chemical Society, 2019, 141, 2721-2730.	6.6	54
23	Catalytic Ring Expansions of Cyclic Alcohols Enabled by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2019, 141, 8752-8757.	6.6	85
24	PCET-Enabled Olefin Hydroamidation Reactions with <i>N</i> -Alkyl Amides. ACS Catalysis, 2019, 9, 4502-4507.	5.5	64
25	Evaluation of excited state bond weakening for ammonia synthesis from a manganese nitride: stepwise proton coupled electron transfer is preferred over hydrogen atom transfer. Chemical Communications, 2019, 55, 5595-5598.	2.2	16
26	Decarboxylative Intramolecular Arene Alkylation Using <i>N</i> -(Acyloxy)phthalimides, an Organic Photocatalyst, and Visible Light. Journal of Organic Chemistry, 2019, 84, 8360-8379.	1.7	49
27	N–H Bond Formation in a Manganese(V) Nitride Yields Ammonia by Light-Driven Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2019, 141, 4795-4799.	6.6	43
28	A Redox Strategy for Light-Driven, Out-of-Equilibrium Isomerizations and Application to Catalytic C–C Bond Cleavage Reactions. Journal of the American Chemical Society, 2019, 141, 1457-1462.	6.6	167
29	Enantioselective Synthesis of Pyrroloindolines via Noncovalent Stabilization of Indole Radical Cations and Applications to the Synthesis of Alkaloid Natural Products. Journal of the American Chemical Society, 2018, 140, 3394-3402.	6.6	185
30	Intermolecular Anti-Markovnikov Hydroamination of Unactivated Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2018, 140, 741-747.	6.6	149
31	Applications and Prospects for Triplet–Triplet Annihilation Photon Upconversion. Chimia, 2018, 72, 501.	0.3	20
32	Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science, 2017, 355, 727-730.	6.0	282
33	Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations. Angewandte Chemie, 2016, 128, 10123-10127.	1.6	17
34	Catalytic C–N Bond-Forming Reactions Enabled by Proton-Coupled Electron Transfer Activation of Amide N–H Bonds. ACS Catalysis, 2016, 6, 2894-2903.	5.5	100
35	Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities. Topics in Current Chemistry, 2016, 374, 30.	3.0	114
36	Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature, 2016, 539, 268-271.	13.7	623

ROBERT KNOWLES

#	Article	IF	CITATIONS
37	Catalytic Ring-Opening of Cyclic Alcohols Enabled by PCET Activation of Strong O–H Bonds. Journal of the American Chemical Society, 2016, 138, 10794-10797.	6.6	287
38	Synthetic Applications of Proton-Coupled Electron Transfer. Accounts of Chemical Research, 2016, 49, 1546-1556.	7.6	566
39	Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations. Angewandte Chemie - International Edition, 2016, 55, 9969-9973.	7.2	78
40	Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities. Topics in Current Chemistry Collections, 2016, , 145-203.	0.2	7
41	Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir. Chemical Science, 2016, 7, 2066-2073.	3.7	103
42	Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2015, 137, 9226-9229.	6.6	258
43	Bond-Weakening Catalysis: Conjugate Aminations Enabled by the Soft Homolysis of Strong N–H Bonds. Journal of the American Chemical Society, 2015, 137, 6440-6443.	6.6	92
44	Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2015, 137, 13492-13495.	6.6	249
45	Reaching Your Full (Over)Potential: A Novel Approach to Electrocatalytic Oxygen Reduction. ACS Central Science, 2015, 1, 224-225.	5.3	2
46	Proton-Coupled Electron Transfer in Organic Synthesis: Novel Homolytic Bond Activations and Catalytic Asymmetric Reactions with Free Radicals. Synlett, 2014, 25, 2819-2826.	1.0	71
47	Catalytic Olefin Hydroamination with Aminium Radical Cations: A Photoredox Method for Direct C–N Bond Formation. Journal of the American Chemical Society, 2014, 136, 12217-12220.	6.6	217
48	Enantioselective Photoredox Catalysis Enabled by Proton-Coupled Electron Transfer: Development of an Asymmetric Aza-Pinacol Cyclization. Journal of the American Chemical Society, 2013, 135, 17735-17738.	6.6	392
49	Catalytic Ketyl-Olefin Cyclizations Enabled by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2013, 135, 10022-10025.	6.6	275
50	Concerning the Mechanism of the FeCl ₃ -Catalyzed α-Oxyamination of Aldehydes: Evidence for a Non-SOMO Activation Pathway. Journal of the American Chemical Society, 2010, 132, 10012-10014.	6.6	142
51	Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20678-20685.	3.3	650
52	Enantioselective Thiourea-Catalyzed Cationic Polycyclizations. Journal of the American Chemical Society, 2010, 132, 5030-5032.	6.6	297