Sebastien Carnicella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7680900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subthalamic stimulation in Parkinson's disease: restoring the balance of motivated behaviours. Brain, 2012, 135, 1463-1477.	7.6	275
2	Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol, 2014, 48, 243-252.	1.7	257
3	Ethanol Induces Long-Term Facilitation of NR2B-NMDA Receptor Activity in the Dorsal Striatum: Implications for Alcohol Drinking Behavior. Journal of Neuroscience, 2007, 27, 3593-3602.	3.6	169
4	Endogenous BDNF in the Dorsolateral Striatum Gates Alcohol Drinking. Journal of Neuroscience, 2009, 29, 13494-13502.	3.6	167
5	Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson's disease. Molecular Psychiatry, 2014, 19, 358-367.	7.9	166
6	Long-Lasting Adaptations of the NR2B-Containing NMDA Receptors in the Dorsomedial Striatum Play a Crucial Role in Alcohol Consumption and Relapse. Journal of Neuroscience, 2010, 30, 10187-10198.	3.6	161
7	Role for mammalian target of rapamycin complex 1 signaling in neuroadaptations underlying alcohol-related disorders. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20093-20098.	7.1	140
8	GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8114-8119.	7.1	117
9	Excessive alcohol consumption is blocked by glial cell line–derived neurotrophic factor. Alcohol, 2009, 43, 35-43.	1.7	108
10	AKT Signaling Pathway in the Nucleus Accumbens Mediates Excessive Alcohol Drinking Behaviors. Biological Psychiatry, 2011, 70, 575-582.	1.3	104
11	Ethanol-Mediated Facilitation of AMPA Receptor Function in the Dorsomedial Striatum: Implications for Alcohol Drinking Behavior. Journal of Neuroscience, 2012, 32, 15124-15132.	3.6	83
12	Emotional manifestations of PD: Neurobiological basis. Movement Disorders, 2016, 31, 1103-1113.	3.9	79
13	GDNF — A potential target to treat addiction. , 2009, 122, 9-18.		78
14	Glial Cell Line-Derived Neurotrophic Factor Reverses Alcohol-Induced Allostasis of the Mesolimbic Dopaminergic System: Implications for Alcohol Reward and Seeking. Journal of Neuroscience, 2011, 31, 9885-9894.	3.6	74
15	Apathy and Impulse Control Disorders: YinÂ& Yang of Dopamine Dependent Behaviors. Journal of Parkinson's Disease, 2015, 5, 625-636.	2.8	67
16	Psychostimulant effect of dopaminergic treatment and addictions in Parkinson's disease. Movement Disorders, 2017, 32, 1566-1573.	3.9	61
17	What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease?. Translational Psychiatry, 2016, 6, e753-e753.	4.8	60
18	Implication of dopamine D3 receptor activation in the reversion of Parkinson's disease-related motivational deficits. Translational Psychiatry, 2014, 4, e401-e401.	4.8	58

#	Article	IF	CITATIONS
19	Pramipexole reverses Parkinson's diseaseâ€related motivational deficits in rats. Movement Disorders, 2014, 29, 912-920.	3.9	55
20	GDNF is an Endogenous Negative Regulator of Ethanolâ€Mediated Reward and of Ethanol Consumption After a Period of Abstinence. Alcoholism: Clinical and Experimental Research, 2009, 33, 1012-1024.	2.4	40
21	Cabergoline Decreases Alcohol Drinking and Seeking Behaviors Via Glial Cell Line-Derived Neurotrophic Factor. Biological Psychiatry, 2009, 66, 146-153.	1.3	40
22	Nucleus Accumbens-Derived Glial Cell Line-Derived Neurotrophic Factor Is a Retrograde Enhancer of Dopaminergic Tone in the Mesocorticolimbic System. Journal of Neuroscience, 2010, 30, 14502-14512.	3.6	39
23	Plasma or serum? A qualitative study on rodents and humans using high-throughput microRNA sequencing for circulating biomarkers. Biology Methods and Protocols, 2019, 4, bpz006.	2.2	38
24	The Small G Protein H-Ras in the Mesolimbic System Is a Molecular Gateway to Alcohol-Seeking and Excessive Drinking Behaviors. Journal of Neuroscience, 2012, 32, 15849-15858.	3.6	36
25	Noribogaine, but not 18â€MC, exhibits similar actions as ibogaine on GDNF expression and ethanol selfâ€administration. Addiction Biology, 2010, 15, 424-433.	2.6	35
26	Trait Impulsivity and Anhedonia: Two Gateways for the Development of Impulse Control Disorders in Parkinson's Disease?. Frontiers in Psychiatry, 2016, 7, 91.	2.6	28
27	DREADDs: The Power of the Lock, the Weakness of the Key. Favoring the Pursuit of Specific Conditions Rather than Specific Ligands. ENeuro, 2019, 6, ENEURO.0171-19.2019.	1.9	28
28	Regulation of Operant Oral Ethanol Self-Administration: A Dose-Response Curve Study in Rats. Alcoholism: Clinical and Experimental Research, 2011, 35, 116-125.	2.4	27
29	Subthalamic deep brain stimulation differently alters striatal dopaminergic receptor levels in rats. Movement Disorders, 2015, 30, 1739-1749.	3.9	25
30	Compound 21, a two-edged sword with both DREADD-selective and off-target outcomes in rats. PLoS ONE, 2020, 15, e0238156.	2.5	20
31	Subthalamic Nucleus Stimulation Impairs Motivation: Implication for Apathy in Parkinson's Disease. Movement Disorders, 2020, 35, 616-628.	3.9	20
32	Implication of dorsostriatal D3 receptors in motivational processes: a potential target for neuropsychiatric symptoms in Parkinson's disease. Scientific Reports, 2017, 7, 41589.	3.3	15
33	Reversing dopaminergic sensitization. Movement Disorders, 2017, 32, 1679-1683.	3.9	12
34	Nigrostriatal Dopaminergic Denervation Does Not Promote Impulsive Choice in the Rat: Implication for Impulse Control Disorders in Parkinson's Disease. Frontiers in Behavioral Neuroscience, 2018, 12, 312.	2.0	12
35	A metabolic biomarker predicts Parkinson's disease at the early stages in patients and animal models. Journal of Clinical Investigation, 2022, 132, .	8.2	12
36	Cholinergic effects on fear conditioning I: the degraded contingency effect is disrupted by atropine but reinstated by physostigmine. Psychopharmacology, 2005, 178, 524-532.	3.1	10

#	Article	IF	CITATIONS
37	Cholinergic effects on fear conditioning II: nicotinic and muscarinic modulations of atropine-induced disruption of the degraded contingency effect. Psychopharmacology, 2005, 178, 533-541.	3.1	8
38	GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics, 2020, 17, 17-42.	4.4	8
39	Fos immunolabelling evidence for brain regions involved in the Pavlovian degraded contingency effect and in its disruption by atropine. Neuropharmacology, 2006, 51, 102-111.	4.1	4
40	Dopamine D3 Receptors: A Potential Target to Treat Motivational Deficits in Parkinson's Disease. Current Topics in Behavioral Neurosciences, 2022, , 109-132.	1.7	4
41	Prefrontal cortex and reversion of atropine-induced disruption of the degraded contingency effect by antipsychotic agents and N-desmethylclozapine in rats. International Journal of Neuropsychopharmacology, 2010, 13, 109.	2.1	3
42	Reply to: Letter to the Editor by MartÃnezâ€Fernández. Movement Disorders, 2020, 35, 1084-1085.	3.9	0
43	Élaboration d'un modèle de psychose délirante chez le rat ayant une validité théorique. , 2008, , 1	79-195.	0
44	Motivational Deficits in Parkinson's Disease: Role of the Dopaminergic System and Deep-Brain Stimulation of the Subthalamic Nucleus. Innovations in Cognitive Neuroscience, 2016, , 363-388.	0.3	0
45	Compound 21, a two-edged sword with both DREADD-selective and off-target outcomes in rats. , 2020, 15, e0238156.		0
46	Compound 21, a two-edged sword with both DREADD-selective and off-target outcomes in rats. , 2020, 15, e0238156.		0
47	Compound 21, a two-edged sword with both DREADD-selective and off-target outcomes in rats. , 2020, 15, e0238156.		0
48	Compound 21, a two-edged sword with both DREADD-selective and off-target outcomes in rats. , 2020, 15, e0238156.		0