Henrique Miguel Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7680573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Social actors' perceptions of wildlife: Insights for the conservation of species in Mediterranean protected areas. Ambio, 2022, 51, 990-1000.	2.8	11
2	Resolving the <scp>SLOSS</scp> dilemma for biodiversity conservation: a research agenda. Biological Reviews, 2022, 97, 99-114.	4.7	48
3	Expertâ€based assessment of rewilding indicates progress at siteâ€level, yet challenges for upscaling. Ecography, 2022, 2022, .	2.1	17
4	Biodiversity postâ€2020: Closing the gap between global targets and nationalâ€level implementation. Conservation Letters, 2022, 15, e12848.	2.8	32
5	Nature futures for the urban century: Integrating multiple values into urban management. Environmental Science and Policy, 2022, 131, 46-56.	2.4	31
6	Response of Common and Rare Beetle Species to Tree Species and Vertical Stratification in a Floodplain Forest. Insects, 2022, 13, 161.	1.0	5
7	Participatory scenarios for restoring European landscapes show a plurality of nature values. Ecography, 2022, 2022, .	2.1	12
8	Supporting the restoration of complex ecosystems requires longâ€ŧerm and multiâ€scale perspectives. Ecography, 2022, 2022, .	2.1	0
9	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
10	Quantifying effort needed to estimate species diversity from citizen science data. Ecosphere, 2022, 13, .	1.0	7
11	Urban conservation gardening in the decade of restoration. Nature Sustainability, 2022, 5, 649-656.	11.5	18
12	Road encroachment mediates species occupancy, trait filtering and dissimilarity of passerine communities. Biological Conservation, 2022, 270, 109590.	1.9	0
13	From antagonistic conservation to biodiversity democracy in rewilding. One Earth, 2022, 5, 466-469.	3.6	4
14	Conserving Ecosystem Diversity in the Tropical Andes. Remote Sensing, 2022, 14, 2847.	1.8	9
15	Ensuring effective implementation of the post-2020 global biodiversity targets. Nature Ecology and Evolution, 2021, 5, 411-418.	3.4	130
16	Specialist Birds Replace Generalists in Grassland Remnants as Land Use Change Intensifies. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	6
17	Ecosystem service mapping needs to capture more effectively the biodiversity important for service supply. Ecosystem Services, 2021, 48, 101259.	2.3	12
18	Thermal flexibility and a generalist life history promote urban affinity in butterflies. Global Change Biology, 2021, 27, 3532-3546.	4.2	19

#	Article	IF	CITATIONS
19	Large-bodied birds are over-represented in unstructured citizen science data. Scientific Reports, 2021, 11, 19073.	1.6	42
20	The lost road: Do transportation networks imperil wildlife population persistence?. Perspectives in Ecology and Conservation, 2021, 19, 411-416.	1.0	33
21	Biodiversity: Monitoring trends and implications forÂecosystem functioning. Current Biology, 2021, 31, R1390-R1392.	1.8	6
22	Range size predicts the risk of local extinction from habitat loss. Global Ecology and Biogeography, 2020, 29, 16-25.	2.7	81
23	Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Global Ecology and Conservation, 2020, 22, e00886.	1.0	17
24	Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability, 2020, 3, 16-24.	11.5	267
25	Global patterns of forest loss across IUCN categories of protected areas. Biological Conservation, 2020, 241, 108299.	1.9	67
26	Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People and Nature, 2020, 2, 1172-1195.	1.7	127
27	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	6.0	225
28	Mediterranean wetland conservation in the context of climate and land cover change. Regional Environmental Change, 2020, 20, 1.	1.4	21
29	Alternative pathways to a sustainable future lead to contrasting biodiversity responses. Global Ecology and Conservation, 2020, 22, e01028.	1.0	7
30	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	3.4	67
31	Essential Biodiversity Variables: Integrating In-Situ Observations and Remote Sensing Through Modeling. , 2020, , 485-501.		14
32	Global modeling of nature's contributions to people. Science, 2019, 366, 255-258.	6.0	279
33	Change versus stability: are protected areas particularly pressured by global land cover change?. Landscape Ecology, 2019, 34, 2779-2790.	1.9	29
34	Reply to: Soils need to be considered when assessing the impacts of land-use change on carbon sequestration. Nature Ecology and Evolution, 2019, 3, 1643-1644.	3.4	0
35	Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Global Ecology and Conservation, 2019, 19, e00661.	1.0	37
36	Species traits shape the relationship between local and regional species abundance distributions. Ecosphere, 2019, 10, e02750.	1.0	3

Henrique Miguel Pereira

#	Article	IF	CITATIONS
37	Rewilding complex ecosystems. Science, 2019, 364, .	6.0	304
38	Habitat amount, not patch size and isolation, drives species richness of macroâ€moth communities in countryside landscapes. Journal of Biogeography, 2019, 46, 956-967.	1.4	28
39	Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology and Evolution, 2019, 3, 628-637.	3.4	265
40	Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology and Evolution, 2019, 3, 539-551.	3.4	283
41	Global mismatches in aboveground and belowground biodiversity. Conservation Biology, 2019, 33, 1187-1192.	2.4	103
42	Finding the essential: Improving conservation monitoring across scales. Global Ecology and Conservation, 2019, 18, e00601.	1.0	12
43	Beta diversity patterns reveal positive effects of farmland abandonment on moth communities. Scientific Reports, 2019, 9, 1549.	1.6	21
44	Reply: Modeling scenarios of population response to roads as a conservation risk assessment strategy. Biological Conservation, 2019, 230, 201-202.	1.9	1
45	On the identification of mortality hotspots in linear infrastructures. Basic and Applied Ecology, 2019, 34, 25-35.	1.2	9
46	The role of competition in driving species global distributions: Soricid shrews as a case study. Journal of Biogeography, 2019, 46, 134-144.	1.4	7
47	Railway ecology vs. road ecology: similarities and differences. European Journal of Wildlife Research, 2019, 65, 1.	0.7	34
48	How to fit the distribution of apex scavengers into landâ€ e bandonment scenarios? The Cinereous vulture in the Mediterranean biome. Diversity and Distributions, 2018, 24, 1018-1031.	1.9	13
49	Response to Kabisch and Colleagues. BioScience, 2018, 68, 167-168.	2.2	Ο
50	Stakeholders perceptions of the endangered Egyptian vulture: Insights for conservation. Biological Conservation, 2018, 218, 173-180.	1.9	30
51	Population persistence in landscapes fragmented by roads: Disentangling isolation, mortality, and the effect of dispersal. Ecological Modelling, 2018, 375, 45-53.	1.2	34
52	Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Global Ecology and Biogeography, 2018, 27, 2-13.	2.7	34
53	Building essential biodiversity variables (<scp>EBV</scp> s) of species distribution and abundance at a global scale. Biological Reviews, 2018, 93, 600-625.	4.7	218
54	Theoretical Approach for how Species Abundance Distributions Change Across Scales*. , 2018, , .		0

#	Article	IF	CITATIONS
55	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	1.3	61
56	Measuring rewilding progress. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170433.	1.8	46
57	Environmental challenges for the Belt and Road Initiative. Nature Sustainability, 2018, 1, 206-209.	11.5	305
58	Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks. Frontiers in Marine Science, 2018, 5, .	1.2	148
59	Global gaps in soil biodiversity data. Nature Ecology and Evolution, 2018, 2, 1042-1043.	3.4	99
60	Global exposure of carnivores to roads. Global Ecology and Biogeography, 2017, 26, 592-600.	2.7	74
61	Involving Citizen Scientists in Biodiversity Observation. , 2017, , 211-237.		32
62	Rewilding: A Call for Boosting Ecological Complexity in Conservation. Conservation Letters, 2017, 10, 276-278.	2.8	71
63	Using citizen science data to estimate climatic niches and species distributions. Basic and Applied Ecology, 2017, 20, 75-85.	1.2	50
64	Monitoring Essential Biodiversity Variables at the Species Level. , 2017, , 79-105.		18
65	Improving extinction projections across scales and habitats using the countryside species-area relationship. Scientific Reports, 2017, 7, 12899.	1.6	27
66	Spatial distribution of citizen science casuistic observations for different taxonomic groups. Scientific Reports, 2017, 7, 12832.	1.6	52
67	Assessing landâ€use effects on European plant diversity using a biomeâ€specific countryside species–area model. Diversity and Distributions, 2017, 23, 1193-1203.	1.9	5
68	Multiscale scenarios for nature futures. Nature Ecology and Evolution, 2017, 1, 1416-1419.	3.4	131
69	Railway Ecology. , 2017, , 3-9.		14
70	When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience, 2017, 67, 820-833.	2.2	114
71	Dispersal ability determines the scaling properties of species abundance distributions: a case study using arthropods from the Azores. Scientific Reports, 2017, 7, 3899.	1.6	25
72	Global biodiversity monitoring: From data sources to Essential Biodiversity Variables. Biological Conservation, 2017, 213, 256-263.	1.9	183

#	Article	IF	CITATIONS
73	Assessing the suitability of diversity metrics to detect biodiversity change. Biological Conservation, 2017, 213, 341-350.	1.9	92
74	How to quantify biodiversity footprints of consumption? A review of multi-regional input–output analysis and life cycle assessment. Current Opinion in Environmental Sustainability, 2017, 29, 75-81.	3.1	42
75	Monitoring biodiversity change through effective global coordination. Current Opinion in Environmental Sustainability, 2017, 29, 158-169.	3.1	147
76	Restoring degraded land: contributing to Aichi Targets 14, 15, and beyond. Current Opinion in Environmental Sustainability, 2017, 29, 207-214.	3.1	19
77	Macroecology meets IPBES. Frontiers of Biogeography, 2016, 7, .	0.8	0
78	Towards a Conceptual Framework for Social-Ecological Systems Integrating Biodiversity and Ecosystem Services with Resource Efficiency Indicators. Sustainability, 2016, 8, 201.	1.6	23
79	Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 2016, 22, 3948-3959.	4.2	79
80	Vulture restaurants cheat ecosystems. Nature, 2016, 540, 525-525.	13.7	3
81	A latitudinal gradient for genetic diversity. Science, 2016, 353, 1494-1495.	6.0	14
82	Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sensing in Ecology and Conservation, 2016, 2, 122-131.	2.2	243
83	Fostering integration between biodiversity monitoring and modelling. Journal of Applied Ecology, 2016, 53, 1299-1304.	1.9	42
84	An allometric approach to quantify the extinction vulnerability of birds and mammals. Ecology, 2016, 97, 615-626.	1.5	23
85	An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem Services, 2016, 17, 14-23.	2.3	418
86	Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective. Journal of Applied Ecology, 2016, 53, 1341-1350.	1.9	129
87	Mate Choice Drives Evolutionary Stability in a Hybrid Complex. PLoS ONE, 2015, 10, e0132760.	1.1	11
88	Environmental science: Agree on biodiversity metrics to track from space. Nature, 2015, 523, 403-405.	13.7	329
89	The dispersal of alien species redefines biogeography in the Anthropocene. Science, 2015, 348, 1248-1251.	6.0	331
90	Reshaping agri-environmental subsidies: From marginal farming to large-scale rewilding. Basic and Applied Ecology, 2015, 16, 95-103.	1.2	102

#	Article	IF	CITATIONS
91	Rewilding Abandoned Landscapes in Europe. , 2015, , 3-23.		60
92	Biodiversity offsets: from current challenges to harmonized metrics. Current Opinion in Environmental Sustainability, 2015, 14, 61-67.	3.1	84
93	Towards a global terrestrial species monitoring program. Journal for Nature Conservation, 2015, 25, 51-57.	0.8	86
94	Conservation Planning for Biodiversity and Wilderness: A Real-World Example. Environmental Management, 2015, 55, 1168-1180.	1.2	25
95	Mapping opportunities and challenges for rewilding in Europe. Conservation Biology, 2015, 29, 1017-1027.	2.4	89
96	Challenges and opportunities for the Bolivian Biodiversity Observation Network. Biodiversity, 2015, 16, 86-98.	0.5	10
97	Towards a European Policy for Rewilding. , 2015, , 205-223.		8
98	European Wilderness in a Time of Farmland Abandonment. , 2015, , 25-46.		4
99	Ecosystem Services: The Opportunities of Rewilding in Europe. , 2015, , 47-64.		15
100	Top Scavengers in a Wilder Europe. , 2015, , 85-106.		7
101	Maintaining Disturbance-Dependent Habitats. , 2015, , 143-167.		11
102	A framework to identify enabling and urgent actions for the 2020 Aichi Targets. Basic and Applied Ecology, 2014, 15, 633-638.	1.2	58
103	The unusual suspect: Land use is a key predictor of biodiversity patterns in the Iberian Peninsula. Acta Oecologica, 2014, 61, 41-50.	0.5	38
104	Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy, 2014, 36, 60-72.	2.5	186
105	Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography, 2014, 37, 679-688.	2.1	55
106	Response of nonâ€native <scp>E</scp> uropean terrestrial gastropods to novel climates correlates with biogeographical and biological traits. Global Ecology and Biogeography, 2014, 23, 857-866.	2.7	17
107	Disambiguating the Minimum Viable Population Concept: Response to Reed and McCoy. Conservation Biology, 2014, 28, 871-873.	2.4	4
108	Environment and dispersal paths override life strategies and residence time in determining regional patterns of invasion by alien plants. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 1-10.	1.1	26

#	Article	IF	CITATIONS
109	Interacting Regional-Scale Regime Shifts for Biodiversity and Ecosystem Services. BioScience, 2014, 64, 665-679.	2.2	41
110	A mid-term analysis of progress toward international biodiversity targets. Science, 2014, 346, 241-244.	6.0	949
111	Modeling the impact of road mortality on barn owl (Tyto alba) populations using age-structured models. Ecological Modelling, 2014, 276, 29-37.	1.2	49
112	Countryside Species–Area Relationship as a Valid Alternative to the Matrix alibrated Species–Area Model. Conservation Biology, 2014, 28, 874-876.	2.4	52
113	Modeling Biodiversity Dynamics in Countryside and Native Habitats. , 2013, , 321-328.		6
114	Can we infer about ecosystem services from EIA and SEA practice? A framework for analysis and examples from Portugal. Environmental Impact Assessment Review, 2013, 40, 14-24.	4.4	63
115	Essential Biodiversity Variables. Science, 2013, 339, 277-278.	6.0	1,150
116	Species–area models to assess biodiversity change in multi-habitat landscapes: The importance of species habitat affinity. Basic and Applied Ecology, 2013, 14, 102-114.	1.2	41
117	Comparing Extinction Rates: Past, Present, and Future. , 2013, , 167-176.		13
118	Adaptation of Bird Communities to Farmland Abandonment in a Mountain Landscape. PLoS ONE, 2013, 8, e73619.	1.1	28
119	Indicators for Management of Urban Biodiversity and Ecosystem Services: City Biodiversity Index. , 2013, , 699-718.		27
120	Global Biodiversity Change: The Bad, the Good, and the Unknown. Annual Review of Environment and Resources, 2012, 37, 25-50.	5.6	505
121	From Abandoned Farmland to Self-Sustaining Forests: Challenges and Solutions. Ecosystems, 2012, 15, 881-882.	1.6	8
122	Geometry and scale in species–area relationships. Nature, 2012, 482, E3-E4.	13.7	48
123	Building a global observing system for biodiversity. Current Opinion in Environmental Sustainability, 2012, 4, 139-146.	3.1	125
124	Rewilding Abandoned Landscapes in Europe. Ecosystems, 2012, 15, 900-912.	1.6	455
125	Medicinal use of fauna by a traditional community in the Brazilian Amazonia. Journal of Ethnobiology and Ethnomedicine, 2012, 8, 37.	1.1	34
126	Spatial scaling of species abundance distributions. Ecography, 2012, 35, 549-556.	2.1	35

#	Article	IF	CITATIONS
127	The Why, What, and How of Global Biodiversity Indicators Beyond the 2010 Target. Conservation Biology, 2011, 25, 450-457.	2.4	109
128	Spatio-temporal impacts of roads on the persistence of populations: analytic and numerical approaches. Landscape Ecology, 2011, 26, 253-265.	1.9	54
129	Regime shifts in a socio-ecological model of farmland abandonment. Landscape Ecology, 2011, 26, 737-749.	1.9	56
130	Use and knowledge of the razor-billed curassow pauxi tuberosa (spix, 1825) (galliformes, cracidae) by a riverine community of the oriental amazonia, brazil. Journal of Ethnobiology and Ethnomedicine, 2011, 7, 1.	1.1	168
131	Amphibia, Anura, Cycloramphidae, Proceratophrys concavitympanum Giaretta, Bernarde and Kokubum, 2000: distribution extension for Brazilian Amazonia and first record in the state of ParÃį. Check List, 2011, 7, 110.	0.1	0
132	Global biodiversity monitoring. Frontiers in Ecology and the Environment, 2010, 8, 459-460.	1.9	70
133	Scenarios for Global Biodiversity in the 21st Century. Science, 2010, 330, 1496-1501.	6.0	1,570
134	Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecologica, 2010, 36, 219-226.	0.5	109
135	Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation. Acta Oecologica, 2010, 36, 626-633.	0.5	42
136	Ecological and Cultural Consequences of Agricultural Abandonment in the Peneda-Gerês National Park (Portugal). , 2010, , 175-183.		5
137	The advertisement call of the Narrow-mouthed frog Chiasmocleis avilapiresae Peloso & Sturaro, 2008 (Amphibia, Anura, Microhylidae). Zootaxa, 2010, 2657, 66.	0.2	5
138	Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1305-1312.	3.3	1,736
139	Organismal complexity is an indicator of species existence value. Frontiers in Ecology and the Environment, 2008, 6, 298-299.	1.9	16
140	Does species diversity really drive speciation?. Ecography, 2007, 30, 328-330.	2.1	21
141	MODELING BIODIVERSITY DYNAMICS IN COUNTRYSIDE LANDSCAPES. Ecology, 2006, 87, 1877-1885.	1.5	186
142	Towards the global monitoring of biodiversity change. Trends in Ecology and Evolution, 2006, 21, 123-129.	4.2	314
143	The Future of Vascular Plant Diversity Under Four Global Scenarios. Ecology and Society, 2006, 11, .	1.0	111
144	Ecosystem Services and Human Well-Being: a Participatory Study in a Mountain Community in Portugal. Ecology and Society, 2005, 10, .	1.0	135

#	Article	IF	CITATIONS
145	A FRAMEWORK FOR ASSESSING THE RELATIVE VULNERABILITY OF SPECIES TO LAND-USE CHANGE. , 2004, 14, 730-742.		77
146	Socially Stable Territories: The Negotiation of Space by Interacting Foragers. American Naturalist, 2003, 161, 143-152.	1.0	30
147	The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. Journal of Cell Biology, 2002, 159, 795-805.	2.3	111
148	Conserving Biodiversity and Ecosystem Services. Science, 2001, 291, 2047-2047.	6.0	179
149	A Trade-off in Task Allocation between Sensitivity to the Environment and Response Time. Journal of Theoretical Biology, 2001, 208, 165-184.	0.8	24
150	Chromosomal C-dark Bands Determine the Spatial Organization of Centromeric Heterochromatin in the Nucleus. Molecular Biology of the Cell, 2001, 12, 3563-3572.	0.9	67
151	Distribution of alien tetrapods in the Iberian Peninsula. NeoBiota, 0, 64, 1-21.	1.0	7
152	The influence of motivational factors on the frequency of participation in citizen science activities. Nature Conservation, 0, 18, 61-78.	0.0	39
153	Models of alien species richness show moderate predictive accuracy and poor transferability. NeoBiota, 0, 38, 77-96.	1.0	13