
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/768032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NeuroGen: Activation optimized image synthesis for discovery neuroscience. NeuroImage, 2022, 247, 118812.	2.1	10
2	A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience, 2022, 25, 116-126.	7.1	129
3	The risk of bias in denoising methods: Examples from neuroimaging. PLoS ONE, 2022, 17, e0270895.	1.1	13
4	Holistic face recognition is an emergent phenomenon of spatial processing in face-selective regions. Nature Communications, 2021, 12, 4745.	5.8	22
5	Extensive sampling for complete models of individual brains. Current Opinion in Behavioral Sciences, 2021, 40, 45-51.	2.0	86
6	Color-selective brain responses and hue representations from ultra-high-field fMRI of natural scenes. Journal of Vision, 2021, 21, 2009.	0.1	0
7	Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings. Neurolmage, 2021, 238, 118210.	2.1	28
8	The spatial tuning of the visual word form area depends jointly on stimulus type and task demands. Journal of Vision, 2021, 21, 2732.	0.1	0
9	The target similarity conundrum in rapid serial visual presentation. Journal of Vision, 2021, 21, 2793.	0.1	0
10	Stronger BOLD responses along the horizontal meridian in V1. Journal of Vision, 2021, 21, 2608.	0.1	0
11	Evidence for a ventral visual stream in the pulvinar. Journal of Vision, 2021, 21, 2809.	0.1	3
12	A temporal decomposition method for identifying venous effects in task-based fMRI. Nature Methods, 2020, 17, 1033-1039.	9.0	33
13	Understanding multivariate brain activity: Evaluating the effect of voxelwise noise correlations on population codes in functional magnetic resonance imaging. PLoS Computational Biology, 2020, 16, e1008153.	1.5	13
14	Flexible top-down modulation in human ventral temporal cortex. NeuroImage, 2020, 218, 116964.	2.1	5
15	Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential Representation of Categories and Domains. Journal of Neuroscience, 2020, 40, 3008-3024.	1.7	28
16	Fractional ridge regression: a fast, interpretable reparameterization of ridge regression. GigaScience, 2020, 9, .	3.3	24
17	Precise identification of semantic representations in the human brain. Journal of Vision, 2020, 20, 539.	0.1	2
18	A critical assessment of data quality and venous effects in sub-millimeter fMRI. NeuroImage, 2019, 189, 847-869.	2.1	87

#	Article	IF	CITATIONS
19	Predicting neuronal dynamics with a delayed gain control model. PLoS Computational Biology, 2019, 15, e1007484.	1.5	21
20	Trial-by-trial voxelwise noise correlations improve population coding of orientation in human V1. , 2019, , .		2
21	An image-computable model for the stimulus selectivity of gamma oscillations. ELife, 2019, 8, .	2.8	37
22	Using population receptive field models to elucidate spatial integration in high-level visual cortex. , 2019, , .		1
23	Evidence for Visual Representation of Numerosity in Natural Scenes. , 2019, , .		Ο
24	Population receptive field measurements of stimulus-driven effects in face-selective areas. Journal of Vision, 2019, 19, 258c.	0.1	0
25	Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline. Trends in Cognitive Sciences, 2018, 22, 365-367.	4.0	22
26	Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. NeuroImage, 2018, 170, 373-384.	2.1	71
27	A New Modular Brain Organization of the BOLD Signal during Natural Vision. Cerebral Cortex, 2018, 28, 3065-3081.	1.6	49
28	Compressive Temporal Summation in Human Visual Cortex. Journal of Neuroscience, 2018, 38, 691-709.	1.7	70
29	Principles for models of neural information processing. NeuroImage, 2018, 180, 101-109.	2.1	67
30	The Human Connectome Project 7 Tesla retinotopy dataset: Description and population receptive field analysis. Journal of Vision, 2018, 18, 23.	0.1	139
31	Foreground-Background Segmentation Revealed during Natural Image Viewing. ENeuro, 2018, 5, ENEURO.0075-18.2018.	0.9	12
32	GLMdenoise improves multivariate pattern analysis of fMRI data. NeuroImage, 2018, 183, 606-616.	2.1	31
33	The HCP 7T Retinotopy Dataset: A new resource for investigating the organization of human visual cortex. Journal of Vision, 2018, 18, 215.	0.1	5
34	A non-invasive, quantitative study of broadband spectral responses in human visual cortex. PLoS ONE, 2018, 13, e0193107.	1.1	13
35	The impact of noise correlation on multivariate pattern classification in fMRI. , 2018, , .		0
36	The neural substrate for semantic associations underlies color preference judgments. Journal of Vision, 2018, 18, 870.	0.1	0

#	Article	IF	CITATIONS
37	Fixed versus mixed RSA:ÂExplaining visual representations by fixed and mixed feature sets from shallow and deep computational models. Journal of Mathematical Psychology, 2017, 76, 184-197.	1.0	66
38	Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data. Human Brain Mapping, 2017, 38, 1438-1459.	1.9	17
39	The Functional Neuroanatomy of Human Face Perception. Annual Review of Vision Science, 2017, 3, 167-196.	2.3	186
40	The Functional Neuroanatomy of Face Processing: Insights from Neuroimaging and Implications for Deep Learning. Advances in Computer Vision and Pattern Recognition, 2017, , 3-31.	0.9	5
41	Binocular Rivalry: A Window into Cortical Competition and Suppression. Journal of the Indian Institute of Science, 2017, 97, 477-485.	0.9	2
42	Bottom-up and top-down computations in word- and face-selective cortex. ELife, 2017, 6, .	2.8	118
43	A tool for automatic identification of cerebral sinuses and corresponding artifacts in fMRI. Journal of Vision, 2017, 17, 295.	0.1	2
44	From Retina to Extra-striate Cortex: Forward Models of Visual Input. Journal of Vision, 2017, 17, 10.	0.1	0
45	Bottom-up and top-down computations in word- and face-selective cortex. Journal of Vision, 2017, 17, 13.	0.1	1
46	Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment. Cognitive Neuropsychology, 2016, 33, 265-275.	0.4	18
47	Reward Motivation Enhances Task Coding in Frontoparietal Cortex. Cerebral Cortex, 2016, 26, 1647-1659.	1.6	110
48	Visualizing allocation of attention in naturalistic scenes: an fMRI p-imaging study of human early visual cortex. Journal of Vision, 2016, 16, 870.	0.1	0
49	Temporal Summation and Adaptation in Human Visual Cortex. Journal of Vision, 2016, 16, 1228.	0.1	0
50	Neural representations of visual stimuli are influenced by cognitive load. Journal of Vision, 2016, 16, 1237.	0.1	0
51	A fully computable model of bottom-up and top-down processing in high-level visual cortex. Journal of Vision, 2016, 16, 509.	0.1	0
52	Mixing deep neural network features to explain brain representations. Journal of Vision, 2016, 16, 369.	0.1	0
53	Network-level interactions drive response properties in word- and face-selective cortex. Journal of Vision, 2016, 16, 381.	0.1	0
54	What are deep neural networks and what are they good for?. Journal of Vision, 2016, 16, 368.	0.1	0

KENDRICK KAY

#	Article	IF	CITATIONS
55	Evaluating the Accuracy of Diffusion MRI Models in White Matter. PLoS ONE, 2015, 10, e0123272.	1.1	67
56	Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex. Current Biology, 2015, 25, 595-600.	1.8	185
57	Visual representations are dominated by intrinsic fluctuations correlated between areas. NeuroImage, 2015, 114, 275-286.	2.1	57
58	Computational Modeling of Responses in Human Visual Cortex. , 2015, , 651-659.		11
59	Resolving Ambiguities of MVPA Using Explicit Models of Representation. Trends in Cognitive Sciences, 2015, 19, 551-554.	4.0	101
60	P-imaging: a technique for comparing visually evoked population responses across visual areas and subjects. Journal of Vision, 2015, 15, 576.	0.1	0
61	Near-perfect prediction of reaction time for face gender judgments based on activity in ventral temporal cortex. Journal of Vision, 2015, 15, 753.	0.1	0
62	Broadband spectral responses in visual cortex revealed by a new MEG denoising algorithm. Journal of Vision, 2015, 15, 1285.	0.1	0
63	How bottom-up and top-down factors shape representation in word- and face-selective cortex. Journal of Vision, 2015, 15, 377.	0.1	Ο
64	Haptic fMRI: Accurately estimating neural responses in motor, pre-motor, and somatosensory cortex during complex motor tasks. , 2014, 2014, 2040-5.		7
65	Evaluation and statistical inference for human connectomes. Nature Methods, 2014, 11, 1058-1063.	9.0	225
66	Sparse atomic feature learning via gradient regularization: With applications to finding sparse representations of fMRI activity patterns. , 2014, , .		0
67	Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nature Medicine, 2013, 19, 1667-1672.	15.2	261
68	Asynchronous Broadband Signals Are the Principal Source of the BOLD Response in Human Visual Cortex. Current Biology, 2013, 23, 1145-1153.	1.8	140
69	A Two-Stage Cascade Model of BOLD Responses in Human Visual Cortex. PLoS Computational Biology, 2013, 9, e1003079.	1.5	89
70	Haptic fMRI: Combining functional neuroimaging with haptics for studying the brain's motor control representation. , 2013, 2013, 4137-42.		17
71	Compressive spatial summation in human visual cortex. Journal of Neurophysiology, 2013, 110, 481-494.	0.9	270
72	GLMdenoise: a fast, automated technique for denoising task-based fMRI data. Frontiers in Neuroscience, 2013, 7, 247.	1.4	183

#	Article	IF	CITATIONS
73	Encoding and decoding in fMRI. NeuroImage, 2011, 56, 400-410.	2.1	693
74	I can see what you see. Nature Neuroscience, 2009, 12, 245-245.	7.1	49
75	Bayesian Reconstruction of Perceptual Experiences from Human Brain Activity. Lecture Notes in Computer Science, 2009, , 390-393.	1.0	О
76	Bayesian Reconstruction of Natural Images from Human Brain Activity. Neuron, 2009, 63, 902-915.	3.8	430
77	Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI. Human Brain Mapping, 2008, 29, 142-156.	1.9	73
78	Identifying natural images from human brain activity. Nature, 2008, 452, 352-355.	13.7	1,071
79	Topographic Organization in and near Human Visual Area V4. Journal of Neuroscience, 2007, 27, 11896-11911.	1.7	143