Jaak Järv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7680143/publications.pdf Version: 2024-02-01

ΙΛΛΚΙΔΌΝ

#	Article	IF	CITATIONS
1	Statistical analysis of protein kinase specificity determinants. FEBS Letters, 1998, 430, 45-50.	1.3	123
2	Stereochemical aspects of cholinesterase catalysis. Bioorganic Chemistry, 1984, 12, 259-278.	2.0	75
3	Structure-Activity Relationships in Acetylcholinesterase Reactions. Hydrolysis of Non-ionic Acetic Esters. FEBS Journal, 1976, 67, 315-322.	0.2	60
4	A novel GalR2-specific peptide agonist. Neuropeptides, 2009, 43, 187-192.	0.9	40
5	Novel galanin receptor subtype specific ligands in feeding regulation. Neurochemistry International, 2011, 58, 714-720.	1.9	35
6	Novel systemically active galanin receptor 2 ligands in depressionâ€like behavior. Journal of Neurochemistry, 2013, 127, 114-123.	2.1	35
7	Peptide phosphorylation by calcium-dependent protein kinase from maize seedlings. FEBS Journal, 2000, 267, 337-343.	0.2	31
8	Substrate-binding sites in acetylcholinesterase. Trends in Pharmacological Sciences, 1991, 12, 422-426.	4.0	29
9	Adenosine-5′-carboxylic acid peptidyl derivatives as inhibitors of protein kinases. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1447-1452.	1.0	29
10	Kinetic evidence for isomerization of the dopamine receptor-raclopride complex. Neurochemistry International, 1996, 28, 591-595.	1.9	26
11	A model of non-exclusive binding of agonist and antagonist on g-protein coupled receptors. Journal of Theoretical Biology, 1995, 175, 577-582.	0.8	22
12	Synthesis of N-protected erythro-phenylalanylepoxides. Tetrahedron: Asymmetry, 1995, 6, 2245-2247.	1.8	21
13	Kinetics of the Grignard Reaction with Silanes in Diethyl Ether and Etherâ ^{~,} Toluene Mixtures. Journal of Organic Chemistry, 2003, 68, 9933-9937.	1.7	20
14	Ultrasonic Evidence of Hydrophobic Interactions. Effect of Ultrasound on Benzoin Condensation and Some Other Reactions in Aqueous Ethanol. Journal of Physical Chemistry B, 2007, 111, 3133-3138.	1.2	19
15	Novel Galanin Receptor Subtype Specific Ligand in Depression Like Behavior. Neurochemical Research, 2013, 38, 398-404.	1.6	18
16	Binding of specific ligands to muscarinic receptors alters the fluidity of membrane fragments from rat brain A fluorescence polarization study with lipid-specific probes. FEBS Letters, 1988, 236, 43-46.	1.3	16
17	Protein Kinase Assay Using Tritiated Peptide Substrates and Ferric Adsorbent Paper for Phosphopeptide Binding. Analytical Biochemistry, 1993, 209, 348-353.	1.1	16
18	Modulation of [3H]quinpirole binding to dopaminergic receptors by adenosine A2A receptors. Neuroscience Letters, 1997, 239, 61-64.	1.0	15

Jaak JÃ**¤**ν

#	Article	IF	CITATIONS
19	Synthesis of 3H-labeled N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane (PE2I) and its interaction with mice striatal membrane fragments. Applied Radiation and Isotopes, 2007, 65, 293-300.	0.7	15
20	Substrate Specificity of Protein Kinase C Studied with Peptides Containing D-Amino Acid Residues1. Journal of Biochemistry, 1993, 114, 177-180.	0.9	14
21	Kinetic evidence for different mechanisms of interaction of black mamba toxins $MT\hat{I}\pm$ and $MT\hat{I}^2$ with muscarinic receptors. Toxicon, 2001, 39, 377-382.	0.8	14
22	Leaving group effects i butyrylcholinesterase reaction with organophosphorus inhibitors. Biochimica Et Biophysica Acta - Biomembranes, 1978, 525, 122-133.	1.4	13
23	Linear free energy relationships in cAMP-dependent protein kinase reactions with synthetic substrates. Bioorganic Chemistry, 1991, 19, 77-87.	2.0	13
24	Two-step binding of green mamba toxin to muscarinic acetylcholine receptor. FEBS Letters, 1994, 352, 95-97.	1.3	13
25	Adenosine-Derived Non-Phosphate Antagonists for P2Y1 Purinoceptors. Biochemical and Biophysical Research Communications, 2000, 272, 327-331.	1.0	13
26	Modeling of the Amino Acid Side Chain Effects on Peptide Conformation. Bioorganic Chemistry, 1999, 27, 434-442.	2.0	12
27	Kinetic analysis of inhibition of cAMP-dependent protein kinase catalytic subunit by the peptide–nucleoside conjugate AdcAhxArg6. Bioorganic Chemistry, 2004, 32, 527-535.	2.0	11
28	Sonication effects on non-radical reactions. A sonochemistry beyond the cavitation?. Ultrasonics Sonochemistry, 2014, 21, 997-1001.	3.8	11
29	Sonochemistry of Homogeneous Ionic Reactions. Mini-Reviews in Organic Chemistry, 2010, 7, 204-211.	0.6	11
30	Calibration of glucose biosensors by using pre-steady state kinetic data. Biosensors and Bioelectronics, 1998, 13, 801-807.	5.3	10
31	Adenosine triphosphate is full antagonist at human P2Y1 purinoceptors. Neuroscience Letters, 2000, 284, 179-181.	1.0	10
32	Bi-substrate analogue ligands for affinity chromatography of protein kinases. FEBS Letters, 2000, 480, 244-248.	1.3	10
33	Comparison of cAMP-dependent protein kinase substrate specificity in reaction with proteins and synthetic peptides. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1747, 261-266.	1.1	10
34	Mechanism and stoichiometry of 2,2-diphenyl-1-picrylhydrazyl radical scavenging by glutathione and its novel α-glutamyl derivative. Bioorganic Chemistry, 2009, 37, 126-132.	2.0	10
35	Comparison of various coupling reagents in solid-phase aza-peptide synthesis. Tetrahedron Letters, 2017, 58, 3421-3425.	0.7	10
36	Dual effect of muscarinic receptor agonists on Ca2+ mobilization in SH-SY5Y neuroblastoma cells. European Journal of Pharmacology, 1995, 291, 43-50.	2.7	9

#	Article	IF	CITATIONS
37	A Model of Oximeter - Based Enzyme Electrode. Analytical Letters, 1996, 29, 859-877.	1.0	9
38	Slow isomerization step in the interaction between mouse dopamine transporter and dopamine re-uptake inhibitor N-(3-iodoprop-2E-enyl)-2β-carbo-[3H]methoxy-3β-(4′-methylphenyl)nortropane. Neuroscience Letters, 2006, 410, 218-221.	1.0	9
39	One-Pot Synthesis of Fmoc- and Boc-Protected Aza-Methionine Precursors from 2-Methylthioacetaldehyde Dimethyl Acetal. Organic Preparations and Procedures International, 2014, 46, 559-564.	0.6	9
40	Two-step isomerization of quinuclidinyl benzilate-muscarinic receptor complex. Neurochemistry International, 1988, 12, 285-289.	1.9	8
41	An alternative model for bell-shaped concentration-response curves. Trends in Pharmacological Sciences, 1994, 15, 321.	4.0	8
42	Only Pyrimidinoceptors Are Functionally Expressed in Mouse Neuroblastoma Cell Lines. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 203-208.	1.7	8
43	Ultrasonic detection of hydrophobic interactions: a quantitative approach. Journal of Physical Organic Chemistry, 2008, 21, 1002-1006.	0.9	8
44	Kinetics of Acrylodan-Labelled cAMP-Dependent Protein Kinase Catalytic Subunit Denaturation. Protein Journal, 2013, 32, 519-525.	0.7	8
45	Influence of steric effects in solid-phase aza-peptide synthesis. Tetrahedron Letters, 2018, 59, 2010-2013.	0.7	8
46	Kinetic analysis of butyrylcholinesterase inhibition with N,N-dimethyl-2-phenylaziridinium ion. Bioorganic Chemistry, 1982, 11, 394-403.	2.0	7
47	High-concentration salt effects in acetylcholinesterase reactions. Bioorganic Chemistry, 1988, 16, 429-439.	2.0	7
48	Dual Effect of Nucleotides on P2Y Receptors. IUBMB Life, 2000, 50, 99-103.	1.5	7
49	Kinetic analysis of [35S]dATPαS interaction with P2y1 nucleotide receptor. Neurochemistry International, 2002, 40, 381-386.	1.9	7
50	Significance of hydrophobic interactions in water–organic binary solvents. Journal of Molecular Liquids, 2009, 148, 94-98.	2.3	7
51	Aza-β3-amino acid containing peptidomimetics as cAMP-dependent protein kinase substrates. Bioorganic Chemistry, 2010, 38, 229-233.	2.0	7
52	Probing l-Pyruvate Kinase Regulatory Phosphorylation Site by Mutagenesis. Protein Journal, 2012, 31, 592-597.	0.7	7
53	Chemical functionalization of a polyvinylidene fluoride surface. Polymer Journal, 2013, 45, 313-317.	1.3	7
54	Synthesis of the Fmoc-aza-Arg(Boc)2 precursor via hydrazine alkylation. Proceedings of the Estonian Academy of Sciences, 2014, 63, 438.	0.9	7

#	Article	IF	CITATIONS
55	NCAM-deficient mice show prominent abnormalities in serotonergic and BDNF systems in brain – Restoration by chronic amitriptyline. European Neuropsychopharmacology, 2015, 25, 2394-2403.	0.3	7
56	Effect of strain on gas-phase basicity of (<i>E</i>)-1-methyl-2-(1-methyl-2-adamantylidene)adamantane. Journal of Physical Organic Chemistry, 2015, 28, 447-451.	0.9	7
57	ACE2 Peptide Fragment Interaction with Different S1 Protein Sites. International Journal of Peptide Research and Therapeutics, 2022, 28, 7.	0.9	7
58	Kinetic aspects of l-quinuclidinyl benzilate interaction with muscarinic receptor. Neurochemistry International, 1988, 13, 419-428.	1.9	6
59	Pyrimidinoceptor potentiation by ATP in NG108-15 cells. FEBS Letters, 1998, 439, 107-109.	1.3	6
60	Dual Effect of Nucleotides on P2Y Receptors. IUBMB Life, 2000, 50, 99-103.	1.5	6
61	Kinetic mechanism of dopamine transporter interaction with 1-(2-(bis-(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909). Neurochemistry International, 2008, 53, 370-373.	1.9	6
62	Kinetic sonication effects in aqueous acetonitrile solutions. Reaction rate levelling by ultrasound. Ultrasonics Sonochemistry, 2013, 20, 1414-1418.	3.8	6
63	Potassium iodide catalysis in the alkylation of protected hydrazines. Proceedings of the Estonian Academy of Sciences, 2017, 66, 10.	0.9	6
64	Salt effects on cholinesterase-catalyzed hydrolysis of acetylcholine. Bioorganic Chemistry, 1990, 18, 13-18.	2.0	5
65	Mechanism of modulation of [3H]raclopride binding to dopaminergic receptors in rat striatal membranes by sodium ions. Neurochemistry International, 1997, 30, 575-581.	1.9	5
66	Quantum chemical modelling of the effect of proline residues on peptide conformation. , 1998, 66, 391-396.		5
67	Postgenomic chemistry (IUPAC Technical Report). Pure and Applied Chemistry, 2005, 77, 1641-1654.	0.9	5
68	Production of Biosensors with Exchangeable Enzymeâ^'Containing Threads. Analytical Chemistry, 2007, 79, 6042-6044.	3.2	5
69	Single-subunit allostery in the kinetics of peptide phosphorylation by protein kinase A. Proceedings of the Estonian Academy of Sciences, 2008, 57, 247.	0.9	5
70	Structure-reactivity relationships in organosilicon chemistry revisited. Open Chemistry, 2011, 9, 910-916.	1.0	5
71	Reaction kinetics and solubility in water-organic binary solutions are governed by similar solvation equilibria. Journal of Physical Organic Chemistry, 2016, 29, 118-126.	0.9	5
72	Computational modeling of strained alkenes: Choosing the right computational model. International Journal of Quantum Chemistry, 2017, 117, e25439.	1.0	5

#	Article	IF	CITATIONS
73	Alkylboronic acids accelerate affinity labelling of acetylcholinesterase with N,N,-dimethyl-2-phenylaziridinium ion. BBA - Proteins and Proteomics, 1984, 784, 35-39.	2.1	4
74	P2Y-receptor-ligand database. Trends in Biochemical Sciences, 2000, 25, 35.	3.7	4
75	Kinetics of [35S]dATPαS interaction with P2Y1 purinoceptor in rat brain membranes. Neuroscience Letters, 2004, 355, 9-12.	1.0	4
76	Similar dynamics of G-protein coupled receptors molecules in response to antagonist binding. Neuroscience Letters, 2005, 373, 150-152.	1.0	4
77	Selectivity in the Grignard Reaction with Silanes. Synlett, 2010, 2010, 291-293.	1.0	4
78	Kinetic sonication effects in light of molecular dynamics simulation of the reaction medium. Ultrasonics Sonochemistry, 2013, 20, 703-707.	3.8	4
79	Synthesis of aza-phenylalanine, aza-tyrosine, and aza-tryptophan precursors via hydrazine alkylation. Proceedings of the Estonian Academy of Sciences, 2015, 64, 168.	0.9	4
80	Thermal Stability of Dopamine Transporters. Journal of Membrane Biology, 2015, 248, 775-781.	1.0	4
81	Bromine formation in solid NaBr/KNO3 mixture and assay of this reaction via bromination of activated aromatics. Chemical Papers, 2018, 72, 2893-2898.	1.0	4
82	Reversible inhibition of butyrylcholinesterase with aromatic hydrocarbons. BBA - Proteins and Proteomics, 1982, 706, 174-178.	2.1	3
83	Site-specificity of butyrylcholinesterase alkylation with N,N-dimethyl-2-phenylaziridinium ion. BBA - Proteins and Proteomics, 1984, 791, 15-20.	2.1	3
84	Kinetics of N-methylscopolamine interaction with muscarinic receptor from rat cerebral cortex. Neurochemistry International, 1989, 15, 301-305.	1.9	3
85	Fluidity of detergent micelles plays an important role in muscarinic receptor solubilization. Journal of Biosciences, 1990, 15, 149-152.	0.5	3
86	Alkylation of acetylcholinesterase anionic centre with aziridinium ion accelerates the enzyme acylation step. BBA - Proteins and Proteomics, 1991, 1077, 407-412.	2.1	3
87	Serine decomposition in solid-state catalytic isotope exchange of a peptide. Bioorganic Chemistry, 1992, 20, 245-250.	2.0	3
88	Structure-Activity Relationships in Peptide Juvenoids. Bioorganic Chemistry, 1993, 21, 7-12.	2.0	3
89	Phosphate-Substituted ATP Analogs Are Antagonists at Human P2Y1 Purinoceptors. Archives of Biochemistry and Biophysics, 2000, 381, 171-172.	1.4	3
90	â€~Strain effect' descriptors for ATP and ADP derivatives with modified phosphate groups. Computers & Chemistry, 2002, 26, 341-346.	1.2	3

Jaak JÃ**¤**ν

#	Article	IF	CITATIONS
91	Screening for the Optimal Specificity Profile of Protein Kinase C Using Electrospray Mass-Spectrometry. Journal of Biomolecular Screening, 2005, 10, 320-328.	2.6	3
92	Rate and equilibrium constants for Grignard reaction with alkoxysilanes and ketones. Journal of Organometallic Chemistry, 2008, 693, 2351-2354.	0.8	3
93	Steric Parameters for Substituents Bound to Atoms of Silicon and Some Other Elements of the Third Period. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 2503-2510.	0.8	3
94	Effect of two simultaneous aza-l²3-amino acid substitutions on recognition of peptide substrates by cAMP dependent protein kinase catalytic subunit. Bioorganic Chemistry, 2011, 39, 133-137.	2.0	3
95	One-pot Synthesis of Protected Alkylhydrazines from Acetals and Ketals. Scope and Limitations. Organic Preparations and Procedures International, 2015, 47, 490-498.	0.6	3
96	Differentiating between drugs with short and long residence times. MedChemComm, 2016, 7, 1654-1656.	3.5	3
97	A Convenient Methanolysis in the Synthesis of Carfentanyl. Organic Preparations and Procedures International, 2018, 50, 522-526.	0.6	3
98	<i>In Vitro</i> Ligand Binding Kinetics Explains the Pharmacokinetics of [¹⁸ F]FE-PE2I in Dopamine Transporter PET Imaging. ACS Medicinal Chemistry Letters, 2018, 9, 1292-1296.	1.3	3
99	One-Pot Synthesis of Protected Benzylhydrazines from Acetals. Organic Preparations and Procedures International, 2018, 50, 416-423.	0.6	3
100	Steric impact of aza-amino acid on solid-phase aza-peptide bond synthesis. Tetrahedron Letters, 2021, 69, 152973.	0.7	3
101	Allosteric Cooperativity in Inhibition of Protein Kinase a Catalytic Subunit. The Open Enzyme Inhibition Journal, 2008, 1, 42-47.	2.0	3
102	Acetylcholinesterase inhibition by alkanesulfonylchlorides: Allosteric regulation by tetraalkylammonium ions. Bioorganic Chemistry, 1989, 17, 131-140.	2.0	2
103	Spatial orientation of n-alkanesulfonyl chlorides in the active center of cholinesterases. Bioorganic Chemistry, 1989, 17, 79-85.	2.0	2
104	Comparison of Substrate Specificities of Protein Kinases A and C Based on Peptide Substrates. Bioorganic Chemistry, 1994, 22, 328-336.	2.0	2
105	Quantitative Structure–Activity Relationships in the Protein Kinase C Reaction with Synthetic Peptides Derived from Myelin Basic Protein. Bioorganic Chemistry, 1996, 24, 159-168.	2.0	2
106	Ligand structure controlled allostery in cAMP-dependent protein kinase catalytic subunit. Open Life Sciences, 2009, 4, 131-141.	0.6	2
107	Computer modeling of the dynamic properties of the cAMP-dependent protein kinase catalytic subunit. Computational Biology and Chemistry, 2013, 47, 66-70.	1.1	2
108	Computational simulation of ligand docking to L-type pyruvate kinase subunit. Computational Biology and Chemistry, 2014, 48, 40-44.	1.1	2

#	Article	IF	CITATIONS
109	Thermodynamic Aspects of cAMP Dependent Protein Kinase Catalytic Subunit Allostery. Protein Journal, 2014, 33, 386-393.	0.7	2
110	Allosteric Effect of Adenosine Triphosphate on Peptide Recognition by 3′5′-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits. Protein Journal, 2016, 35, 459-466.	0.7	2
111	Computational modeling of acrylodan-labeled cAMP dependent protein kinase catalytic subunit unfolding. Computational Biology and Chemistry, 2016, 61, 197-201.	1.1	2
112	Kinetic tools for the identification of ligand–receptor interaction mechanisms. Proceedings of the Estonian Academy of Sciences, 2017, 66, 202.	0.9	2
113	Oxidative bromination of non-activated aromatic compounds with AlBr3/KNO3 mixture. Chemical Papers, 2020, 74, 1219-1227.	1.0	2
114	The Importance of Hydrophobic Interactions in the Antagonist Binding to the Muscarinic Acetylcholine Receptor Acta Chemica Scandinavica, 1982, 36b, 487-490.	0.7	2
115	Influence of pH on butyrylcholinesterase reaction with organophosphorus inhibitors. Biochimica Et Biophysica Acta - Biomembranes, 1978, 526, 450-456.	1.4	1
116	Leaving group effects in binding and reaction steps of acetylcholinesterase inhibition by O,O-diethylthiophosphates. Bioorganic Chemistry, 1986, 14, 222-227.	2.0	1
117	The Influence of Inorganic Salts on the Inhibition of Acetylcholinesterase by O,O-Diethylthiophosphates. Phosphorus, Sulfur and Silicon and the Related Elements, 1990, 51, 407-407.	0.8	1
118	Phosphorylation of Sepharose-Coupled Peptides by Protein Kinase A. Bioorganic Chemistry, 1996, 24, 1-9.	2.0	1
119	Influence of atropine on carbachol dual effect on Ca2 mobilization in SH-SY5Y neuroblastoma cells. IUBMB Life, 1999, 47, 743-747.	1.5	1
120	Differential Specificity of Protein Kinases A and C in Reaction with Synthetic Peptides. Bioorganic Chemistry, 1999, 27, 189-196.	2.0	1
121	Reversible and irreversible components of [3H]-N-propylnorapomorphine interaction with rat striatal membranes. Neuroscience Letters, 2002, 325, 111-114.	1.0	1
122	Phosphorylation is switch of L-type pyruvate kinase allostery. Open Life Sciences, 2010, 5, 135-142.	0.6	1
123	Nβ-methylation changes the recognition pattern of aza-β3-amino acid containing peptidomimetic substrates by protein kinase A. Organic and Medicinal Chemistry Letters, 2011, 1, 16.	2.0	1
124	Role of water in determining organic reactivity in aqueous binary solvents. Open Chemistry, 2012, 10, 1600-1608.	1.0	1
125	Small Structural Changes at theNâ€position of the Tropane Core Control the Mechanism of Nortropane Derivatives Binding to Dopamine Transporter. ChemistrySelect, 2018, 3, 6581-6584.	0.7	1

126 THE ROLE OF ANIONIC SITE IN THE SPECIFICITY OF CHOLINESTERASES. , 1980, , 53-69.

1

#	Article	IF	CITATIONS
127	Interaction of Non-Phosphorylated Liver Pyruvate Kinase with Fructose 1,6-Bisphosphate and Peptides that Mimic the Phosphorylatable N-terminus of the Enzyme. Protein and Peptide Letters, 2013, 20, 1200-1203.	0.4	1
128	Solvent Isotope Effect on the Reaction of Acetylcholinesterase with Alkanesulfonyl Halogenides. Bioorganic Chemistry, 1993, 21, 61-70.	2.0	0
129	Optimization of Synthesis of Agarose-Based Lectin Affinity Sorbents. Preparative Biochemistry and Biotechnology, 1994, 24, 61-67.	0.4	0
130	Oxyanion formation in phosphoryl transfer catalyzed by protein kinases A and C. Journal of Molecular Catalysis B: Enzymatic, 1996, 2, 85-92.	1.8	0
131	Activation of cAMP synthesis in rat brain cortical membranes by rubidium and cesium ions. IUBMB Life, 1998, 45, 745-751.	1.5	0
132	Alumina coating of polyvinylidene fluoride (PVDF) surface in liquid phase. Surface Engineering, 2014, 30, 268-271.	1.1	0
133	Different States of Acrylodan-Labeled 3′5′-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits in Denaturant Solutions. Protein Journal, 2016, 35, 331-339.	0.7	0
134	Strain criteria for alkenes: Two different manifestations. Computational and Theoretical Chemistry, 2020, 1178, 112764.	1.1	0
135	Regioselective One-pot Synthesis of N-Fmoc/Cbz, N''-Boc Protected Indol-(3)-ylmethylhydrazines. Organic Preparations and Procedures International, 2020, 52, 212-218.	0.6	0
136	Synthesis of N ^ω ,Î≪sup>ω–di-Boc-3-guanidylpropanal - An Important Reagent for Synthesis of <i>Aza</i> -Arg Precursors. Organic Preparations and Procedures International, 2021, 53, 472-478.	0.6	0
137	A Novel Strategy of Effect-Directed Ligand Design for G-Protein Coupled Receptors. , 1997, , 791-796.		0
138	Regioselective Benzylation of <i>N</i> -Boc- <i>N</i> '-COCF ₃ -protected Hydrazine. Organic Preparations and Procedures International, 0, , 1-6.	0.6	0