
Nikolay S Makarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7679582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	24.0	66
2	Minimizing Scaling Losses in High-Performance Quantum Dot Luminescent Solar Concentrators for Large-Area Solar Windows. ACS Applied Materials & Interfaces, 2022, 14, 29679-29689.	8.0	12
3	Heavyâ€Metalâ€Free Quantum Dotâ€Based Flexible Electronics. Information Display, 2021, 37, 24-32.	0.2	4
4	Optimizing the Aesthetics of High-Performance CuInS ₂ /ZnS Quantum Dot Luminescent Solar Concentrator Windows. ACS Applied Energy Materials, 2020, 3, 8159-8163.	5.1	24
5	Exploring the Biocompatibility of Near-IR CuInSe _{<i>x</i>} S _{2–<i>x</i>} /ZnS Quantum Dots for Deep-Tissue Bioimaging. ACS Applied Bio Materials, 2020, 3, 8567-8574.	4.6	9
6	Mobility of the Suzdal Opolye Settlers in 900-1150 AD. Archaeology, Ethnology and Anthropology of Eurasia, 2020, 48, 106-115.	0.2	2
7	Mobility of the Suzdal Opolye Settlers in 900–1150 AD. Archaeology, Ethnology and Anthropology of Eurasia, 2020, 48, 106-115.	0.0	0
8	Fiber-Coupled Luminescent Concentrators for Medical Diagnostics, Agriculture, and Telecommunications. ACS Nano, 2019, 13, 9112-9121.	14.6	28
9	Unraveling the Two-Photon and Excited-State Absorptions of Aza-BODIPY Dyes for Optical Power Limiting in the SWIR Band. Journal of Physical Chemistry C, 2019, 123, 23661-23673.	3.1	37
10	High-Performance CuInS ₂ Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows. ACS Energy Letters, 2018, 3, 520-525.	17.4	184
11	Charge-Transport Mechanisms in CulnSe _{<i>x</i>} S _{2–<i>x</i>} Quantum-Dot Films. ACS Nano, 2018, 12, 12587-12596.	14.6	21
12	Thick-Shell CuInS ₂ /ZnS Quantum Dots with Suppressed "Blinking―and Narrow Single-Particle Emission Line Widths. Nano Letters, 2017, 17, 1787-1795.	9.1	179
13	Quantum Dot Thin-Films as Rugged, High-Performance Photocathodes. Nano Letters, 2017, 17, 2319-2327.	9.1	6
14	Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Journal of the American Chemical Society, 2017, 139, 6644-6653.	13.7	112
15	Light Emission Mechanisms in CuInS ₂ Quantum Dots Evaluated by Spectral Electrochemistry. ACS Photonics, 2017, 4, 2425-2435.	6.6	115
16	Effect of Interfacial Alloying versus "Volume Scaling―on Auger Recombination in Compositionally Graded Semiconductor Quantum Dots. Nano Letters, 2017, 17, 5607-5613.	9.1	73
17	Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots. ACS Nano, 2016, 10, 10829-10841.	14.6	31
18	Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium–Lead-Halide Perovskite Quantum Dots, Nano Letters, 2016, 16, 2349-2362.	9.1	533

#	Article	IF	CITATIONS
19	Tuning the Redox Coupling between Quantum Dots and Dopamine in Hybrid Nanoscale Assemblies. Journal of Physical Chemistry C, 2015, 119, 3388-3399.	3.1	22
20	Fluorenylethynylpyrene derivatives with strong two-photon absorption: influence of substituents on optical properties. Journal of Materials Chemistry C, 2015, 3, 3730-3744.	5.5	39
21	Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nature Nanotechnology, 2015, 10, 878-885.	31.5	448
22	Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. ACS Nano, 2015, 9, 10386-10393.	14.6	459
23	Design and Synthesis of Heterostructured Quantum Dots with Dual Emission in the Visible and Infrared. ACS Nano, 2015, 9, 539-547.	14.6	49
24	Combined experimental and theoretical study of one- and two-photon absorption properties of D–΀–A–΀–D type bis(carbazolylfluorenylethynyl) arene derivatives: Influence of aromatic acceptor bridge. Dyes and Pigments, 2015, 113, 682-691.	3.7	32
25	Two-Photon Absorption in CdSe Colloidal Quantum Dots Compared to Organic Molecules. ACS Nano, 2014, 8, 12572-12586.	14.6	35
26	Simple yet Versatile Synthesis of CuInSe _{<i>x</i>} S _{2–<i>x</i>} Quantum Dots for Sunlight Harvesting. Journal of Physical Chemistry C, 2014, 118, 16987-16994.	3.1	75
27	Molybdenum(<scp>vi</scp>) tris(dithiolene) complexes as a new class of three-dimensional two-photon absorption chromophores at telecommunications wavelengths. Journal of Materials Chemistry C, 2014, 2, 614-617.	5.5	6
28	Photocharging Artifacts in Measurements of Electron Transfer in Quantum-Dot-Sensitized Mesoporous Titania Films. Journal of Physical Chemistry Letters, 2014, 5, 111-118.	4.6	29
29	Symmetry Breaking in Platinum Acetylide Chromophores Studied by Femtosecond Two-Photon Absorption Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 3749-3759.	2.5	71
30	Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nature Communications, 2014, 5, 4148.	12.8	143
31	Nonlinear Optical Pulse Suppression via Ultrafast Photoinduced Electron Transfer in an Aggregated Perylene Diimide/Oligothiophene Molecular Triad. Journal of Physical Chemistry A, 2014, 118, 110-121.	2.5	17
32	Steady-state and time-resolved spectroscopic studies of green-to-red photoconversion of fluorescent protein Dendra2. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 280, 5-13.	3.9	13
33	Alternative selection rules for one- and two-photon transitions in tribenzotetraazachlorin: Quasi-centrosymmetrical π-conjugation pathway of formally non-centrosymmetrical molecule. Journal of Chemical Physics, 2013, 138, 214314.	3.0	14
34	Synthesis, structure, and one- and two-photon absorption properties of N-substituted 3,5-bisarylidenepropenpiperidin-4-ones. Journal of Molecular Structure, 2013, 1037, 288-293.	3.6	2
35	An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells. Nature Communications, 2013, 4, 2887.	12.8	255
36	Direct Synthesis of 2,5â€Bis(dodecanoxy)phenyleneethynyleneâ€Butadiynes by Sonogashira Coupling Reaction. European Journal of Organic Chemistry, 2013, 2013, 5341-5352.	2.4	6

#	Article	IF	CITATIONS
37	PbSe/CdSe Core-Shell Colloidal Quantum Dots with Enhanced Optical Nonlinearities and Dual-Band Infrared/Visible Emission. , 2013, , .		2
38	Dispersion of the Third-Order Nonlinear Optical Response of Organics Using a Few State Model. , 2012, , .		0
39	Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging. Biomedical Optics Express, 2012, 3, 1534.	2.9	7
40	Correlating one-photon, two-photon and excited state spectroscopy of CdSe quantum dots. , 2012, , .		0
41	Impact of Electronic Coupling, Symmetry, and Planarization on One- and Two-Photon Properties of Triarylamines with One, Two, or Three Diarylboryl Acceptors. Journal of Physical Chemistry A, 2012, 116, 3781-3793.	2.5	88
42	Effect of alicyclic ring size on the photophysical and photochemical properties of bis(arylidene)cycloalkanone compounds. Physical Chemistry Chemical Physics, 2012, 14, 11743.	2.8	42
43	Practical Model for First Hyperpolarizability Dispersion Accounting for Both Homogeneous and Inhomogeneous Broadening Effects. Journal of Physical Chemistry Letters, 2012, 3, 2248-2252.	4.6	15
44	Excited state absorption: a key phenomenon for the improvement of biphotonic based optical limiting at telecommunication wavelengths. Physical Chemistry Chemical Physics, 2012, 14, 15299.	2.8	81
45	Describing Two-Photon Absorptivity of Fluorescent Proteins with a New Vibronic Coupling Mechanism. Journal of Physical Chemistry B, 2012, 116, 1736-1744.	2.6	59
46	Relation between Two-Photon Absorption and Dipolar Properties in a Series of Fluorenyl-Based Chromophores with Electron Donating or Electron Withdrawing Substituents. Journal of Physical Chemistry A, 2011, 115, 4255-4262.	2.5	53
47	Rapid, broadband two-photon-excited fluorescence spectroscopy and its application to red-emitting secondary reference compounds. Optical Materials Express, 2011, 1, 551.	3.0	49
48	Two-photon absorption properties of fluorescent proteins. Nature Methods, 2011, 8, 393-399.	19.0	589
49	Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity. BMC Biotechnology, 2011, 11, 20.	3.3	12
50	Oneâ€Photon Photophysics and Twoâ€Photon Absorption of 4â€{9,9â€Di(2â€ethylhexyl)â€7â€diphenylaminofluorenâ€2â€yl]â€2,2′:6′,2′′â€terpyridine and The Complexes. Chemistry - A European Journal, 2011, 17, 2479-2491.	eir Pl ata num	Charide
51	Modeling of non-Lorentzian two-photon absorption line shape in dipolar chromophore. Proceedings of SPIE, 2010, , .	0.8	0
52	Justification of two-level approximation for description of two-photon absorption in oxazine dyes. , 2010, , .		12
53	New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy. Journal of Luminescence, 2010, 130, 1619-1623.	3.1	17
54	Modeling non-Lorentzian two-photon absorption line shape in dipolar chromophores. Journal of Luminescence, 2010, 130, 1055-1059.	3.1	6

#	Article	IF	CITATIONS
55	A new approach to dual-color two-photon microscopy with fluorescent proteins. BMC Biotechnology, 2010, 10, 6.	3.3	30
56	Optimizing Simultaneous Two-Photon Absorption and Transient Tripletâ °'Triplet Absorption in Platinum Acetylide Chromophores. Journal of Physical Chemistry A, 2010, 114, 7003-7013.	2.5	44
57	Maximizing two-photon absorption cross section within few essential state model. Proceedings of SPIE, 2010, , .	0.8	2
58	Internal Quadratic Stark Effect Results in Color Hue Variations in Fluorescent Proteins with the Same Chromophore Structure. , 2010, , .		0
59	Two-photon absorption spectroscopy of corroles. Proceedings of SPIE, 2009, , .	0.8	3
60	Color Hues in Red Fluorescent Proteins Are Due to Internal Quadratic Stark Effect. Journal of Physical Chemistry B, 2009, 113, 12860-12864.	2.6	78
61	Absolute Two-Photon Absorption Spectra and Two-Photon Brightness of Orange and Red Fluorescent Proteins. Journal of Physical Chemistry B, 2009, 113, 855-859.	2.6	163
62	Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy. Organic and Biomolecular Chemistry, 2009, 7, 889.	2.8	130
63	Absolute Two-photon Absorption Spectra Of Orange And Red Fluorescent Proteins. Biophysical Journal, 2009, 96, 400a-401a.	0.5	1
64	Hyperspectral two-photon near-infrared cancer imaging at depth. Proceedings of SPIE, 2009, , .	0.8	2
65	Hyperspectral two-photon near-infrared cancer imaging in vitro and in vivo. Proceedings of SPIE, 2009,	0.8	0
66	Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines. Journal of Luminescence, 2008, 128, 217-222.	3.1	10
67	Two-photon absorption properties of meso-substituted A3-corroles. Chemical Physics Letters, 2008, 462, 246-250.	2.6	28
68	Strong Two-Photon Absorption in Pushâ^'Pull Phthalocyanines:  Role of Resonance Enhancement and Permanent Dipole Moment Change upon Excitation. Journal of Physical Chemistry C, 2008, 112, 848-859.	3.1	48
69	Two-photon absorption standards in the 550-1600 nm excitation wavelength range. Optics Express, 2008, 16, 4029.	3.4	805
70	Quantitative Prediction of Two-Photon Absorption Cross Section Based on Linear Spectroscopic Properties. Journal of Physical Chemistry C, 2008, 112, 7997-8004.	3.1	45
71	Environment-sensitive two-photon dye. , 2008, , .		6
72	Narrowing of the homogeneous two-photon absorption line width in two-level dipolar system. Proceedings of SPIE, 2008, , .	0.8	1

#	Article	IF	CITATIONS
73	Quantitative description of two-photon absorption with few essential states models. Proceedings of SPIE, 2008, , .	0.8	1
74	Broad bandwidth near-IR two-photon absorption in conjugated porphyrin-core dendrimers. Proceedings of SPIE, 2007, , .	0.8	4
75	Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins. Journal of Physical Chemistry B, 2007, 111, 14051-14054.	2.6	63
76	Platinum Acetylide Two-Photon Chromophores. Inorganic Chemistry, 2007, 46, 6483-6494.	4.0	161
77	Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution. Journal of Chemical Physics, 2006, 124, 224701.	3.0	41
78	Multiwave stimulated raman scattering under quasi-phase-matching conditions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 95, 442-446.	0.6	3
79	Quasi-phase matching generation of blue coherent radiation at stimulated Raman scattering. Optics Communications, 2002, 203, 413-420.	2.1	18
80	SRS generation of anti-Stokes radiation under phase quasi-matching conditions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2001, 90, 938-941.	0.6	2