Christopher F Mcconville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7679199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Electron Accumulation and the Charge Neutrality Level in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>In</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:msub><mml:mi mathvariant="normal">Oin3</mml:mi </mml:msub>. Physical Review</mml:msub></mml:math 	7.8	236
2	Reaction of atomic oxygen with a Pt() surface: chemical and structural determination using XPS, CAICISS and LEED. Surface Science, 2003, 545, 19-33.	1.9	210
3	Antibacterial Liquid Metals: Biofilm Treatment <i>via</i> Magnetic Activation. ACS Nano, 2020, 14, 802-817.	14.6	198
4	The structure of the formate species on copper surfaces: new photoelectron diffraction results and sexafs data reassessed. Surface Science, 1988, 201, 228-244.	1.9	178
5	An XPS study of iron sodium silicate glass surfaces. Journal of Non-Crystalline Solids, 1996, 208, 267-276.	3.1	171

 $_{6}$ Simple x-ray standing-wave technique and its application to the investigation of the Cu(111) (\hat{a} \hat{s} \hat{a} \hat{s} \hat{s}

7	Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nature Electronics, 2020, 3, 51-58.	26.0	161
8	A simple X-ray standing wave technique for surface structure determination - theory and an application. Surface Science, 1988, 195, 237-254.	1.9	152
9	Origin of the n-type conductivity of InN: The role of positively charged dislocations. Applied Physics Letters, 2006, 88, 252109.	3.3	138
10	Surface alloying at InAsî—GaAs interfaces grown on (001) surfaces by molecular beam epitaxy. Surface Science, 1997, 387, 213-226.	1.9	126
11	Printing two-dimensional gallium phosphate out of liquid metal. Nature Communications, 2018, 9, 3618.	12.8	107
12	Wafer-Sized Ultrathin Gallium and Indium Nitride Nanosheets through the Ammonolysis of Liquid Metal Derived Oxides. Journal of the American Chemical Society, 2019, 141, 104-108.	13.7	107
13	Liquid Metals in Catalysis for Energy Applications. Joule, 2020, 4, 2290-2321.	24.0	106
14	Unique surface patterns emerging during solidification of liquid metal alloys. Nature Nanotechnology, 2021, 16, 431-439.	31.5	104
15	Quantized Electron Accumulation States in Indium Nitride Studied by Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 2006, 97, 237601.	7.8	103
16	Synchrotron radiation core level photoemission investigation of the initial stages of oxidation of Al(111). Surface Science, 1987, 188, 1-14.	1.9	97
17	Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 4521-4536.	5.4	94
18	An X-ray absorption and photoelectron diffraction study of the Cu{100} c(2 × 2) CO structure. Surface Science, 1986, 166, 221-233.	1.9	93

#	Article	IF	CITATIONS
19	Valence band offset of InNâ^•AlN heterojunctions measured by x-ray photoelectron spectroscopy. Applied Physics Letters, 2007, 90, 132105.	3.3	89
20	Surface Band-Gap Narrowing in Quantized Electron Accumulation Layers. Physical Review Letters, 2010, 104, 256803.	7.8	86
21	Transition from electron accumulation to depletion at InGaN surfaces. Applied Physics Letters, 2006, 89, 202110.	3.3	85
22	Valence band offset of the ZnO/AlN heterojunction determined by x-ray photoemission spectroscopy. Applied Physics Letters, 2008, 93, .	3.3	78
23	The structure of sodium iron silicate glass – a multi-technique approach. Journal of Non-Crystalline Solids, 1999, 253, 192-202.	3.1	76
24	High-mobility p-type semiconducting two-dimensional β-TeO2. Nature Electronics, 2021, 4, 277-283.	26.0	75
25	Atomic hydrogen cleaning of polar III–V semiconductor surfaces. Surface Science, 1998, 401, 125-137.	1.9	72
26	Surface reconstructions of InSb(100) observed by scanning tunneling microscopy. Physical Review B, 1994, 50, 14965-14976.	3.2	71
27	Investigation of the Cu(111) (â^š3 × â^š3)R30°-Cl structure using sexafs and photoelectron diffraction. Surface Science, 1987, 182, 213-230.	1.9	69
28	Heteroepitaxial growth of InSb on (100)GaAs using molecular beam epitaxy. Applied Physics Letters, 1988, 53, 1189-1191.	3.3	67
29	Green Synthesis of Lowâ€Dimensional Aluminum Oxide Hydroxide and Oxide Using Liquid Metal Reaction Media: Ultrahigh Flux Membranes. Advanced Functional Materials, 2018, 28, 1804057.	14.9	67
30	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	21.0	66
31	Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors. Applied Physics Letters, 2011, 98, .	3.3	64
32	Optimization of a High Work Function Solution Processed Vanadium Oxide Hole-Extracting Layer for Small Molecule and Polymer Organic Photovoltaic Cells. Journal of Physical Chemistry C, 2013, 117, 49-57.	3.1	64
33	Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH. ACS Applied Materials & Interfaces, 2018, 10, 42786-42795.	8.0	64
34	Antipathogenic properties and applications of low-dimensional materials. Nature Communications, 2021, 12, 3897.	12.8	63
35	Influence of surfactant coverage on epitaxial growth of Ge on Si(001). Physical Review B, 1996, 54, 8600-8604.	3.2	62
36	Low-temperature liquid platinum catalyst. Nature Chemistry, 2022, 14, 935-941.	13.6	61

Christopher F Mcconville

#	Article	IF	CITATIONS
37	Electronic structure of the (2×2)Cï4gcarbidic phase on Ni{100}. Physical Review B, 1986, 34, 2199-2206.	3.2	59
38	An angle-resolved photoemission study of the reaction of CH3SH and (CH3S)2 with Cu(111) and Ni(100). Surface Science, 1987, 187, 133-143.	1.9	59
39	Proliferation of Faulty Materials Data Analysis in the Literature. Microscopy and Microanalysis, 2020, 26, 1-2.	0.4	59
40	Negative Band Gaps in DiluteInNxSb1â^'xAlloys. Physical Review Letters, 2004, 92, 136801.	7.8	58
41	Magnetic properties of praseodymium ions in Na2O–Pr2O3–SiO2 glasses. Journal of Magnetism and Magnetic Materials, 2003, 260, 60-69.	2.3	57
42	Antibacterial Properties of Graphene Oxide–Copper Oxide Nanoparticle Nanocomposites. ACS Applied Bio Materials, 2019, 2, 5687-5696.	4.6	57
43	A SEXAFS and X-ray standing wave study of the surface: Adsorbate-substrate and adsorbate-adsorbate registry. Surface Science, 1990, 230, 13-26.	1.9	56
44	Band anticrossing in GaNxSb1â^'x. Applied Physics Letters, 2006, 89, 111921.	3.3	55
45	Heteroepitaxial Beta-Ga ₂ O ₃ on 4H-SiC for an FET With Reduced Self Heating. IEEE Journal of the Electron Devices Society, 2017, 5, 256-261.	2.1	55
46	Surface Structure and Electronic Properties of In ₂ O ₃ (111) Single-Crystal Thin Films Grown on Y-Stabilized ZrO ₂ (111). Chemistry of Materials, 2009, 21, 4353-4355.	6.7	54
47	Valence band photoemission study of the coadsorption of CO and K on Cu{100};. Surface Science, 1984, 138, 31-39.	1.9	52
48	An STM study of the InSb(100)-c(8 $ ilde{A}$ — 2) surface. Surface Science, 1993, 280, 63-70.	1.9	52
49	Spatial distribution of In during the initial stages of growth of InAs on GaAs(001)-c(4 × 4). Surface Science, 1996, 365, 735-742.	1.9	52
50	Accumulation layer profiles at InAs polar surfaces. Applied Physics Letters, 1997, 71, 3688-3690.	3.3	52
51	Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys. Applied Physics Letters, 2005, 87, 182114.	3.3	52
52	XPS and magnetization studies of cobalt sodium silicate glasses. Journal of Non-Crystalline Solids, 1997, 220, 267-279.	3.1	50
53	Band gap reduction in GaNSb alloys due to the anion mismatch. Applied Physics Letters, 2005, 87, 132101.	3.3	49
54	Ambient temperature diodes and fieldâ€effect transistors in InSb/In1â^'xAlxSb. Applied Physics Letters, 1991, 59, 1761-1763.	3.3	45

#	Article	IF	CITATIONS
55	Characterization of thiolate species formation on Cu(111) using soft x-ray photoelectron spectroscopy. Journal of Physics Condensed Matter, 1998, 10, 8661-8670.	1.8	45
56	Thickness dependence of the strain, band gap and transport properties of epitaxial In ₂ O ₃ thin films grown on Y-stabilised ZrO ₂ (111). Journal of Physics Condensed Matter, 2011, 23, 334211.	1.8	45
57	Bulk and interfacial nanostructure and properties in deep eutectic solvents: Current perspectives and future directions. Journal of Colloid and Interface Science, 2022, 608, 2430-2454.	9.4	45
58	Direct conversion of CO ₂ to solid carbon by Ga-based liquid metals. Energy and Environmental Science, 2022, 15, 595-600.	30.8	45
59	Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chemical Society Reviews, 2022, 51, 1253-1276.	38.1	45
60	Maximum piezoelectricity in a few unit-cell thick planar ZnO – A liquid metal-based synthesis approach. Materials Today, 2021, 44, 69-77.	14.2	44
61	Plasmon excitations and accumulation layers in heavily doped InAs(001). Physical Review B, 1996, 54, 2654-2661.	3.2	43
62	X-ray photoelectron spectroscopy study of copper sodium silicate glass surfaces. Journal of Non-Crystalline Solids, 1997, 215, 271-282.	3.1	42
63	A Visibleâ€Blind Photodetector and Artificial Optoelectronic Synapse Using Liquidâ€Metal Exfoliated ZnO Nanosheets. Advanced Optical Materials, 2021, 9, 2100449.	7.3	41
64	Poly(methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: bulk and surface characterization. European Polymer Journal, 2003, 39, 5-13.	5.4	40
65	Photoabsorption shape resonance in the adsorption system CO/K/Cu(100): A dilemma. Physical Review B, 1986, 34, 1340-1342.	3.2	39
66	Cobalt-Directed Assembly of Antibodies onto Metal–Phenolic Networks for Enhanced Particle Targeting. Nano Letters, 2020, 20, 2660-2666.	9.1	39
67	Direct evidence for the step density model in the initial stages of the layer-by-layer homoepitaxial growth of GaAs(111)A. Surface Science, 1997, 370, L173-L178.	1.9	38
68	Doping Process of 2D Materials Based on the Selective Migration of Dopants to the Interface of Liquid Metals. Advanced Materials, 2021, 33, e2104793.	21.0	38
69	Inversion and accumulation layers at InN surfaces. Journal of Crystal Growth, 2006, 288, 268-272.	1.5	37
70	Unintentional conductivity of indium nitride: transport modelling and microscopic origins. Journal of Physics Condensed Matter, 2009, 21, 174201.	1.8	36
71	Significant Enhancement of Antimicrobial Activity in Oxygen-Deficient Zinc Oxide Nanowires. ACS Applied Bio Materials, 2020, 3, 2997-3004.	4.6	36
72	Nexafs determination of CO orientation on a stepped platinum surface. Surface Science, 1987, 183, 576-590.	1.9	35

#	Article	IF	CITATIONS
73	Low energy ion beam damage of semiconductor surfaces: a detailed study of InSb(100) using electron energy loss spectroscopy. Surface Science, 1991, 247, 1-12.	1.9	35
74	Atomic hydrogen cleaning of GaAs(): a scanning tunnelling microscopy study. Surface Science, 2004, 548, L1-L6.	1.9	33
75	Band bending at the surfaces of In-rich InGaN alloys. Journal of Applied Physics, 2008, 104, .	2.5	33
76	Structural investigation of ordered Sb adsorption phases on Ag(111) using coaxial impact collision ion scattering spectroscopy. Surface Science, 1997, 372, 117-131.	1.9	31
77	Structural and magnetic properties of sodium iron germanate glasses. Journal of Non-Crystalline Solids, 2000, 272, 179-190.	3.1	31
78	Growth of dilute GaNSb by plasma-assisted MBE. Journal of Crystal Growth, 2005, 278, 188-192.	1.5	31
79	Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. Journal of Materials Chemistry B, 2020, 8, 10776-10787.	5.8	31
80	The influence of conduction band plasmons on core-level photoemission spectra of InN. Surface Science, 2008, 602, 871-875.	1.9	30
81	Low dimensional materials for glucose sensing. Nanoscale, 2021, 13, 11017-11040.	5.6	30
82	Passivation and reconstruction-dependent electron accumulation at sulphur treated InAs() surfaces. Surface Science, 2003, 523, 179-188.	1.9	28
83	Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Materials Horizons, 2020, 7, 827-834.	12.2	27
84	Two‧tep Synthesis of Largeâ€Area 2D Bi ₂ S ₃ Nanosheets Featuring High Inâ€Plane Anisotropy. Advanced Materials Interfaces, 2020, 7, 2001131.	3.7	27
85	Nanostructure of a deep eutectic solvent at solid interfaces. Journal of Colloid and Interface Science, 2021, 591, 38-51.	9.4	27
86	Conformationally tuned antibacterial oligomers target the peptidoglycan of Gram-positive bacteria. Journal of Colloid and Interface Science, 2020, 580, 850-862.	9.4	24
87	Broad-Spectrum Solvent-free Layered Black Phosphorus as a Rapid Action Antimicrobial. ACS Applied Materials & Interfaces, 2021, 13, 17340-17352.	8.0	24
88	Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates. Crystal Growth and Design, 2013, 13, 4923-4929.	3.0	21
89	Identification of Lone-Pair Surface States on Indium Oxide. Journal of Physical Chemistry C, 2019, 123, 1700-1709.	3.1	20
90	Ultrasonic Spray Pyrolysis of Antimonyâ€Doped Tin Oxide Transparent Conductive Coatings. Advanced Materials Interfaces, 2020, 7, 2000655.	3.7	20

Christopher F Mcconville

#	Article	IF	CITATIONS
91	Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach. Journal of Materials Chemistry C, 2021, 9, 11815-11826.	5.5	19
92	Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	19
93	High voltage hybrid organic photovoltaics using a zinc oxide acceptor and a subphthalocyanine donor. Physical Chemistry Chemical Physics, 2014, 16, 18926-18932.	2.8	17
94	Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe. Journal of Materials Chemistry A, 2014, 2, 19201-19207.	10.3	17
95	Programmable Phototaxis of Metal–Phenolic Particle Microswimmers. Advanced Materials, 2021, 33, e2006177.	21.0	16
96	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals. , 2022, 1, 158-169.		15
97	Dilute antimonide nitrides for very long wavelength infrared applications. , 2006, 6206, 201.		14
98	Highly accurate and label-free discrimination of single cancer cell using a plasmonic oxide-based nanoprobe. Biosensors and Bioelectronics, 2022, 198, 113814.	10.1	14
99	Surface passivation of semiconducting oxides by self-assembled nanoparticles. Scientific Reports, 2016, 6, 18449.	3.3	12
100	Atomically Thin Antimonyâ€Đoped Indium Oxide Nanosheets for Optoelectronics. Advanced Optical Materials, 2022, 10, .	7.3	12
101	Highly Conductive and Visibly Transparent p-Type CuCrO ₂ Films by Ultrasonic Spray Pyrolysis. ACS Applied Materials & Interfaces, 2022, 14, 11768-11778.	8.0	11
102	lodine adsorption on InSb(001) at room temperature and low temperature: surface reaction. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3259.	1.7	10
103	Electroformed, Selfâ€Connected Tin Oxide Nanoparticle Networks for Electronic Reservoir Computing. Advanced Electronic Materials, 2020, 6, 2000081.	5.1	10
104	Effects of Ni <i>d</i> -levels on the electronic band structure of NixCd1-xO semiconducting alloys. Journal of Applied Physics, 2017, 122, .	2.5	9
105	Large Area Ultrathin InN and Tin Doped InN Nanosheets Featuring 2D Electron Gases. ACS Nano, 2022, 16, 5476-5486.	14.6	8
106	The Impact of Water on the Lateral Nanostructure of a Deep Eutectic Solvent–Solid Interface. Australian Journal of Chemistry, 2022, 75, 111-125.	0.9	7
107	Pinning effect on the band gap modulation of crystalline BexZn1â^'xO alloy films grown on Al2O3(0001). CrystEngComm, 2014, 16, 2136-2143.	2.6	6
108	MBE growth and characterization of Mn-doped InN. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	5

#	Article	IF	CITATIONS
109	Electromagnetic Functionalization of Wideâ€Bandgap Dielectric Oxides by Boron Interstitial Doping. Advanced Materials, 2018, 30, e1802025.	21.0	5
110	Temperature-Dependent Electrical Properties of Graphitic Carbon Schottky Contacts to <i>l²</i> -Gaâ,,Oâ,f. IEEE Transactions on Electron Devices, 2020, 67, 5669-5675.	3.0	5
111	SILAR deposition of bismuth vanadate photoanodes for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 25641-25650.	10.3	5
112	Field's Metal Nanodroplets for Creating Phase-Change Materials. ACS Applied Nano Materials, 0, , .	5.0	4
113	Electrochemical Stability of Zinc and Copper Surfaces in Protic Ionic Liquids. Langmuir, 2022, 38, 4633-4644.	3.5	4
114	Recrystallization of Highly-Mismatched BexZn1–xO Alloys: Formation of a Degenerate Interface. ACS Applied Materials & Interfaces, 2014, 6, 18758-18768.	8.0	3
115	Mechanisms in the Formation of High Quality Schottky Contacts to n-type ZnO. Materials Research Society Symposia Proceedings, 2007, 1035, 1.	0.1	1
116	Comment on "Computer Simulation of Coaxial Impact-Collision Ion Scattering Spectroscopy Spectra of Clean Pt(111) Surface and Pt(111)–p(2×2)-O Surface― Japanese Journal of Applied Physics, 2009, 48, 099101.	1.5	1