
Helen E Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuropeptide Y1 receptor antagonism protects β-cells and improves glycemic control in type 2 diabetes. Molecular Metabolism, 2022, 55, 101413.	6.5	10
2	Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD mice. JCI Insight, 2022, 7, .	5.0	18
3	Interferons limit autoantigen-specific CD8+ T-cell expansion in the non-obese diabetic mouse. Cell Reports, 2022, 39, 110747.	6.4	3
4	Deficiency of the innate immune adaptor STING promotes autoreactive T cell expansion in NOD mice. Diabetologia, 2021, 64, 878-889.	6.3	6
5	Harnessing CD8 + Tâ€cell exhaustion to treat type 1 diabetes. Immunology and Cell Biology, 2021, 99, 486-495.	2.3	5
6	Machine Learning Algorithms, Applied to Intact Islets of Langerhans, Demonstrate Significantly Enhanced Insulin Staining at the Capillary Interface of Human Pancreatic β Cells. Metabolites, 2021, 11, 363.	2.9	3
7	Severe acute respiratory syndrome coronavirus 2 as a potential cause of type 1 diabetes facilitated by spike protein receptor binding domain attachment to human islet cells: An illustrative case study and experimental data. Diabetic Medicine, 2021, 38, e14608.	2.3	9
8	Structural and functional polarisation of human pancreatic beta cells in islets from organ donors with and without type 2 diabetes. Diabetologia, 2021, 64, 618-629.	6.3	40
9	A fluorescent timer reporter enables sorting of insulin secretory granules by age. Journal of Biological Chemistry, 2020, 295, 8901-8911.	3.4	22
10	Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans. Diabetologia, 2019, 62, 2273-2286.	6.3	16
11	IL-21 regulates SOCS1 expression in autoreactive CD8+ T cells but is not required for acquisition of CTL activity in the islets of non-obese diabetic mice. Scientific Reports, 2019, 9, 15302.	3.3	4
12	Replica moulded poly(dimethylsiloxane) microwell arrays induce localized endothelial cell immobilization for coculture with pancreatic islets. Biointerphases, 2019, 14, 011002.	1.6	1
13	Replacing murine insulin 1 with human insulin protects NOD mice from diabetes. , 2019, 14, e0225021.		Ο
14	Replacing murine insulin 1 with human insulin protects NOD mice from diabetes. , 2019, 14, e0225021.		0
15	Replacing murine insulin 1 with human insulin protects NOD mice from diabetes. , 2019, 14, e0225021.		0
16	Replacing murine insulin 1 with human insulin protects NOD mice from diabetes. , 2019, 14, e0225021.		0
17	NF-κB is weakly activated in the NOD mouse model of type 1 diabetes. Scientific Reports, 2018, 8, 4217.	3.3	10
18	Type I Interferon Signaling Is Required for Dacryoadenitis in the Nonobese Diabetic Mouse Model of SjŶgren Syndrome. International Journal of Molecular Sciences, 2018, 19, 3259.	4.1	10

Helen E Thomas

#	Article	IF	CITATIONS
19	Repurposed JAK1/JAK2 Inhibitor Reverses Established Autoimmune Insulitis in NOD Mice. Diabetes, 2017, 66, 1650-1660.	0.6	61
20	Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Molecular Immunology, 2017, 82, 19-33.	2.2	17
21	Granzyme A Deficiency Breaks Immune Tolerance and Promotes Autoimmune Diabetes Through a Type I Interferon–Dependent Pathway. Diabetes, 2017, 66, 3041-3050.	0.6	17
22	How to Make Mice Tell the Truth. Diabetes, 2016, 65, 1161-1163.	0.6	4
23	Human islet cells are killed by BID-independent mechanisms in response to FAS ligand. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 379-389.	4.9	10
24	Perforin facilitates beta cell killing and regulates autoreactive CD8 + T ell responses to antigen in mouse models of type 1 diabetes. Immunology and Cell Biology, 2016, 94, 334-341.	2.3	22
25	Perinatal tolerance to proinsulin is sufficient to prevent autoimmune diabetes. JCI Insight, 2016, 1, e86065.	5.0	14
26	Mouse pancreatic beta cells express MHC class II and stimulate CD4 ⁺ T cells to proliferate. European Journal of Immunology, 2015, 45, 2494-2503.	2.9	30
27	Lipotoxic Stress Induces Pancreatic <i>β</i> -Cell Apoptosis through Modulation of Bcl-2 Proteins by the Ubiquitin-Proteasome System. Journal of Diabetes Research, 2015, 2015, 1-16.	2.3	33
28	Localization of dipeptidyl peptidase-4 (CD26) to human pancreatic ducts and islet alpha cells. Diabetes Research and Clinical Practice, 2015, 110, 291-300.	2.8	25
29	Inactivation of Protein Tyrosine Phosphatases Enhances Interferon Signaling in Pancreatic Islets. Diabetes, 2015, 64, 2489-2496.	0.6	17
30	BIM Deficiency Protects NOD Mice From Diabetes by Diverting Thymocytes to Regulatory T Cells. Diabetes, 2015, 64, 3229-3238.	0.6	13
31	Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia, 2015, 58, 140-148.	6.3	32
32	Proinsulin-Specific, HLA-DQ8, and HLA-DQ8-Transdimer–Restricted CD4+ T Cells Infiltrate Islets in Type 1 Diabetes. Diabetes, 2015, 64, 172-182.	0.6	137
33	Activation of the NLRP3 Inflammasome Complex is Not Required for Stress-Induced Death of Pancreatic Islets. PLoS ONE, 2014, 9, e113128.	2.5	26
34	Linking obesity with type 2 diabetes: the role of T-bet. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 331.	2.4	18
35	Effector-Memory T Cells Develop in Islets and Report Islet Pathology in Type 1 Diabetes. Journal of Immunology, 2014, 192, 572-580.	0.8	52
36	Deficiency in Type I Interferon Signaling Prevents the Early Interferon–Induced Gene Signature in Pancreatic Islets but Not Type 1 Diabetes in NOD Mice. Diabetes, 2014, 63, 1032-1040.	0.6	32

Helen E Thomas

#	Article	IF	CITATIONS
37	Functional cytotoxic T lymphocytes against IGRP 206â€214 predict diabetes in the nonâ€obese diabetic mouse. Immunology and Cell Biology, 2014, 92, 640-644.	2.3	13
38	Proinflammatory cytokines contribute to development and function of regulatory T cells in type 1 diabetes. Annals of the New York Academy of Sciences, 2013, 1283, 81-86.	3.8	26
39	Linking Metabolic Abnormalities to Apoptotic Pathways in Beta Cells in Type 2 Diabetes. Cells, 2013, 2, 266-283.	4.1	44
40	An indirect role for NK cells in a CD4 + Tâ€cellâ€dependent mouse model of type I diabetes. Immunology and Cell Biology, 2012, 90, 243-247.	2.3	10
41	Granzyme B Is Dispensable in the Development of Diabetes in Non-Obese Diabetic Mice. PLoS ONE, 2012, 7, e40357.	2.5	12
42	Pathogenic Mechanisms in Type 1 Diabetes: The Islet is Both Target and Driver of Disease. Review of Diabetic Studies, 2012, 9, 148-168.	1.3	55
43	Autoreactive Cytotoxic T Lymphocytes Acquire Higher Expression of Cytotoxic Effector Markers in the Islets of NOD Mice after Priming in Pancreatic Lymph Nodes. American Journal of Pathology, 2011, 178, 2716-2725.	3.8	40
44	The pro-apoptotic BH3-only protein Bid is dispensable for development of insulitis and diabetes in the non-obese diabetic mouse. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 822-830.	4.9	7
45	Intracellular pathways of pancreatic βâ€cell apoptosis in type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2011, 27, 790-796.	4.0	21
46	Interferon signalling in pancreatic beta cells. Frontiers in Bioscience - Landmark, 2009, Volume, 644.	3.0	19
47	Beta cell apoptosis in diabetes. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 1389-1404.	4.9	154
48	In vivo effects of cytokines on pancreatic βâ€cells in models of type I diabetes dependent on CD4 + T lymphocytes. Immunology and Cell Biology, 2009, 87, 178-185.	2.3	21
49	Perturbations in nuclear factorâ€₽B or câ€Jun Nâ€terminal kinase pathways in pancreatic beta cells confer susceptibility to cytokineâ€induced cell death. Immunology and Cell Biology, 2006, 84, 20-27.	2.3	23