Fabrizio Tagliavini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678935/publications.pdf

Version: 2024-02-01

401 papers

22,675 citations

7096 78 h-index 129 g-index

429 all docs 429 docs citations

times ranked

429

15972 citing authors

#	Article	IF	CITATIONS
1	A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort. Applied Neuropsychology Adult, 2022, 29, 112-119.	1.2	18
2	Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 158-168.	1.9	7
3	A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain, 2022, 145, 1805-1817.	7.6	27
4	Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp> : A Longitudinal Multicentre Study. Annals of Neurology, 2022, 91, 33-47.	5.3	21
5	Biochemical and biophysical features of disease-associated tau mutants V363A and V363I. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2022, 1870, 140755.	2.3	O
6	An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers. Journal of Alzheimer's Disease, 2022, , 1-14.	2.6	3
7	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	2.4	2
8	Dataâ€driven staging of genetic frontotemporal dementia using multiâ€modal <scp>MRI</scp> . Human Brain Mapping, 2022, 43, 1821-1835.	3.6	7
9	Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 1408-1423.	0.8	24
10	Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiology of Aging, 2022, , .	3.1	1
11	PMCA-Based Detection of Prions in the Olfactory Mucosa of Patients With Sporadic Creutzfeldt–Jakob Disease. Frontiers in Aging Neuroscience, 2022, 14, 848991.	3.4	4
12	Psychological Impact of Predictive Genetic Testing for Inherited Alzheimer Disease and Frontotemporal Dementia. Alzheimer Disease and Associated Disorders, 2022, Publish Ahead of Print, .	1.3	3
13	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	21.4	700
14	Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network. Frontiers in Neurology, 2022, 13, 855125.	2.4	16
15	Serpin Signatures in Prion and Alzheimer's Diseases. Molecular Neurobiology, 2022, 59, 3778-3799.	4.0	18
16	P301L tau mutation leads to alterations of cell cycle, DNA damage response and apoptosis: Evidence for a role of tau in cancer. Biochemical Pharmacology, 2022, 200, 115043.	4.4	6
17	Brain Metabolism and Amyloid Load in Individuals With Subjective Cognitive Decline or Pre–Mild Cognitive Impairment. Neurology, 2022, 99, .	1.1	5
18	Preventive pharmacological treatment in subjects at risk for fatal familial insomnia: science and public engagement. Prion, 2022, 16, 66-77.	1.8	3

#	Article	IF	CITATIONS
19	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 448-460.e4.	8.1	56
20	Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, 500-514.	0.8	36
21	Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes. Alzheimer's and Dementia, 2021, 17, 969-983.	0.8	31
22	Automatic multispectral MRI segmentation of human hippocampal subfields: an evaluation of multicentric test–retest reproducibility. Brain Structure and Function, 2021, 226, 137-150.	2.3	6
23	Impairment of episodic memory in genetic frontotemporal dementia: A GENFI study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12185.	2.4	11
24	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	5.9	42
25	Machine Learning Driven Profiling of Cerebrospinal Fluid Core Biomarkers in Alzheimer's Disease and Other Neurological Disorders. Frontiers in Neuroscience, 2021, 15, 647783.	2.8	17
26	MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 608-616.	1.9	10
27	Microglial Heterogeneity and Its Potential Role in Driving Phenotypic Diversity of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 2780.	4.1	11
28	Approaches to Understanding <scp>COVID</scp> â€19 and its Neurological Associations. Annals of Neurology, 2021, 89, 1059-1067.	5.3	16
29	Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration. Neurology, 2021, 96, e2296-e2312.	1.1	52
30	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
31	Neuro-telehealth for fragile patients in a tertiary referral neurological institute during the COVID-19 pandemic in Milan, Lombardy. Neurological Sciences, 2021, 42, 2637-2644.	1.9	18
32	Characterizing the Clinical Features and Atrophy Patterns of <i>MAPT</i> -Related Frontotemporal Dementia With Disease Progression Modeling. Neurology, 2021, 97, e941-e952.	1.1	29
33	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	12.8	140
34	The Revised Self-Monitoring Scale detects early impairment of social cognition in genetic frontotemporal dementia within the GENFI cohort. Alzheimer's Research and Therapy, 2021, 13, 127.	6.2	12
35	Spontaneous ARIA-like Events in Cerebral Amyloid Angiopathy–Related Inflammation. Neurology, 2021, 97, e1809-e1822.	1.1	61
36	Dissemination in time and space in presymptomatic granulin mutation carriers: a GENFI spatial chronnectome study. Neurobiology of Aging, 2021, 108, 155-167.	3.1	3

#	Article	IF	Citations
37	Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage: Clinical, 2021, 30, 102646.	2.7	28
38	Disease-related cortical thinning in presymptomatic granulin mutation carriers. NeuroImage: Clinical, 2021, 29, 102540.	2.7	8
39	A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Molecular Neurodegeneration, 2021, 16, 79.	10.8	9
40	Italian consensus recommendations for a biomarkerâ€based aetiological diagnosis in mild cognitive impairment patients. European Journal of Neurology, 2020, 27, 475-483.	3.3	20
41	Early symptoms in symptomatic and preclinical genetic frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 975-984.	1.9	25
42	Abnormal pain perception is associated with thalamo-cortico-striatal atrophy in <i>C9orf72</i> expansion carriers in the GENFI cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1325-1328.	1.9	12
43	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
44	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.1	7
45	Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia. Brain Communications, 2020, 2, .	3.3	20
46	Trajectory of apathy, cognition and neural correlates in the decades before symptoms in frontotemporal dementia. Alzheimer's and Dementia, 2020, 16, e041821.	0.8	0
47	The Free Cued Selective Reminding Test detects episodic memory impairment in the presymptomatic period of familial frontotemporal dementia within the GENFI cohort. Alzheimer's and Dementia, 2020, 16, e045768.	0.8	0
48	Contributions of Molecular and Optical Techniques to the Clinical Diagnosis of Alzheimer's Disease. Brain Sciences, 2020, 10, 815.	2.3	6
49	Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 263-270.	1.9	106
50	Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 612-621.	1.9	55
51	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	5.3	19
52	Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex, 2020, 133, 384-398.	2.4	26
53	A call for a global COVID-19 Neuro Research Coalition. Lancet Neurology, The, 2020, 19, 482-484.	10.2	22
54	Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts. Frontiers in Neurology, 2020, 11, 1021.	2.4	10

#	Article	IF	CITATIONS
55	Subtype and stage inference identifies distinct atrophy patterns in genetic frontotemporal dementia that MAP onto specific MAPT mutations. Alzheimer's and Dementia, 2020, 16, e042996.	0.8	1
56	Robust MR-free Grey Matter Extraction in Amyloid PET/CT Studies with Deep Learning. , 2020, , .		0
57	Synthetic Prion Selection and Adaptation. Molecular Neurobiology, 2019, 56, 2978-2989.	4.0	7
58	Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson's disease and multiple system atrophy. Translational Neurodegeneration, 2019, 8, 24.	8.0	106
59	Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia. Scientific Reports, 2019, 9, 10854.	3.3	9
60	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	10.2	128
61	The Italian INTERCEPTOR Project: From the Early Identification of Patients Eligible for Prescription of Antidementia Drugs to a Nationwide Organizational Model for Early Alzheimer's Disease Diagnosis. Journal of Alzheimer's Disease, 2019, 72, 373-388.	2.6	19
62	Prions Strongly Reduce NMDA Receptor S-Nitrosylation Levels at Pre-symptomatic and Terminal Stages of Prion Diseases. Molecular Neurobiology, 2019, 56, 6035-6045.	4.0	13
63	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. Neurolmage, 2019, 189, 645-654.	4.2	33
64	Education modulates brain maintenance in presymptomatic frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1124-1130.	1.9	23
65	Clinical trials of prion disease therapeutics. Current Opinion in Pharmacology, 2019, 44, 53-60.	3.5	21
66	Prion Efficiently Replicates in α-Synuclein Knockout Mice. Molecular Neurobiology, 2019, 56, 7448-7457.	4.0	5
67	Early cortical and late striatal diffusion restriction on 3T MRI in a longâ€lived sporadic creutzfeldt–jakob disease case. Journal of Magnetic Resonance Imaging, 2019, 50, 1659-1662.	3.4	1
68	Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain, 2019, 142, 1108-1120.	7.6	41
69	PMCA-replicated PrPD in urine of vCJD patients maintains infectivity and strain characteristics of brain PrPD: Transmission study. Scientific Reports, 2019, 9, 5191.	3.3	20
70	Ventricular volume expansion in presymptomatic genetic frontotemporal dementia. Neurology, 2019, 93, e1699-e1706.	1.1	19
71	ICâ€Pâ€045: MEDICAL INFORMATICS PLATFORM (MIP): A VALIDATION STUDY ACROSS CLINICAL ITALIAN COHOR Alzheimer's and Dementia, 2019, 15, P48.	TS: 0:8	О
72	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NeuroImage: Clinical, 2019, 24, 102077.	2.7	27

#	Article	IF	Citations
73	Dreaming of a New World Where Alzheimer's Is a Treatable Disorder. Frontiers in Aging Neuroscience, 2019, 11, 317.	3.4	14
74	Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort. NeuroImage, 2019, 188, 282-290.	4.2	16
75	Review: PrP 106â€126 – 25 years after. Neuropathology and Applied Neurobiology, 2019, 45, 430-440.	3.2	19
76	Clinical and neuropathological phenotype associated with the novel V189I mutation in the prion protein gene. Acta Neuropathologica Communications, 2019, 7, 1.	5.2	68
77	Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 77, 169-177.	3.1	47
78	Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 2019, 25, 152-164.	30.7	111
79	Skin nerve \hat{l}_{\pm} -synuclein deposits in a parkinsonian patient with heterozygous parkin mutation. Parkinsonism and Related Disorders, 2019, 60, 182-183.	2.2	7
80	Multicentre, cross-cultural, population-based, case–control study of physical activity as risk factor for amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 797-803.	1.9	45
81	Effects of peptidyl-prolyl isomerase 1 depletion in animal models of prion diseases. Prion, 2018, 12, 127-137.	1.8	3
82	CXCR4 involvement in neurodegenerative diseases. Translational Psychiatry, 2018, 8, 73.	4.8	66
83	Molecular subtypes of Alzheimer's disease. Scientific Reports, 2018, 8, 3269.	3.3	68
84	In Situ Tissue Labeling of Cerebral Amyloid Using HIV-Related Tat Peptide. Molecular Neurobiology, 2018, 55, 6834-6840.	4.0	10
85	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
86	Combining drug and music therapy in patients with moderate Alzheimer's disease: a randomized study. Neurological Sciences, 2018, 39, 1021-1028.	1.9	39
87	Translational Research in Alzheimer's and Prion Diseases. Journal of Alzheimer's Disease, 2018, 62, 1247-1259.	2.6	7
88	Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (<scp>TAR) Tj ETQq0 0 0 rgBT (<scp>C</scp>ys139<scp>A</scp>rg. Brain Pathology, 2018, 28, 72-76.</scp>	Overlock 4.1	10 Tf 50 147 16
89	An In Vivo 11C-(R)-PK11195 PET and In Vitro Pathology Study of Microglia Activation in Creutzfeldt-Jakob Disease. Molecular Neurobiology, 2018, 55, 2856-2868.	4.0	22
90	Comparison of arterial spin labeling registration strategies in the multiâ€center GENetic frontotemporal dementia initiative (GENFI). Journal of Magnetic Resonance Imaging, 2018, 47, 131-140.	3.4	41

#	Article	IF	Citations
91	Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiology of Aging, 2018, 62, 191-196.	3.1	151
92	Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiology of Aging, 2018, 62, 245.e9-245.e12.	3.1	40
93	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
94	The role of clinical and neuroimaging features in the diagnosis of CADASIL. Journal of Neurology, 2018, 265, 2934-2943.	3.6	25
95	Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nature Communications, 2018, 9, 4273.	12.8	263
96	Tau Mutations as a Novel Risk Factor for Cancerâ€"Response. Cancer Research, 2018, 78, 6525-6525.	0.9	18
97	Tau Mutations Serve as a Novel Risk Factor for Cancer. Cancer Research, 2018, 78, 3731-3739.	0.9	30
98	V363I and V363A mutated tau affect aggregation and neuronal dysfunction differently in C. elegans. Neurobiology of Disease, 2018, 117, 226-234.	4.4	11
99	Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales. Alzheimer's Research and Therapy, 2018, 10, 46.	6.2	34
100	Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases. Frontiers in Neuroscience, 2018, 12, 8.	2.8	26
101	Presymptomatic white matter integrity loss in familial frontotemporal dementia in the <scp>GENFI</scp> cohort: A crossâ€sectional diffusion tensor imaging study. Annals of Clinical and Translational Neurology, 2018, 5, 1025-1036.	3.7	39
102	Distinct Neuroanatomical Correlates of Neuropsychiatric Symptoms in the Three Main Forms of Genetic Frontotemporal Dementia in the GENFI Cohort. Journal of Alzheimer's Disease, 2018, 65, 1-16.	2.6	28
103	latrogenic Creutzfeldt-Jakob disease with Amyloid- \hat{l}^2 pathology: an international study. Acta Neuropathologica Communications, 2018, 6, 5.	5.2	79
104	Low-dose CT for the spatial normalization of PET images: A validation procedure for amyloid-PET semi-quantification. NeuroImage: Clinical, 2018, 20, 153-160.	2.7	21
105	Clinical trials. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 431-444.	1.8	6
106	Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Medicine, 2018, 15, e1002487.	8.4	111
107	Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 152-164.	1.9	107
108	A cluster of progranulin C157KfsX97 mutations in Southern Italy: clinical characterization and genetic correlations. Neurobiology of Aging, 2017, 49, 219.e5-219.e13.	3.1	4

#	Article	IF	Citations
109	Effects of Multiple Genetic Loci on Age atÂOnset in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2017, 56, 1271-1278.	2.6	4
110	Clinical features, pathophysiology and management of fatal familial insomnia. Expert Opinion on Orphan Drugs, 2017, 5, 397-404.	0.8	0
111	Pathogenic $\hat{Al^2}$ A2V versus protective $\hat{Al^2}$ A2T mutation: Early stage aggregation and membrane interaction. Biophysical Chemistry, 2017, 229, 11-18.	2.8	16
112	Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain, 2017, 140, 1784-1791.	7.6	55
113	White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NeuroImage: Clinical, 2017, 15, 171-180.	2.7	63
114	Detection of prion seeding activity in the olfactory mucosa of patients with Fatal Familial Insomnia. Scientific Reports, 2017, 7, 46269.	3.3	41
115	Missense mutation in GRN gene affecting RNA splicing and plasma progranulin level in a family affected by frontotemporal lobar degeneration. Neurobiology of Aging, 2017, 54, 214.e1-214.e6.	3.1	8
116	[O2–01–06]: FRONTO‧UBCORTICAL HYPOPERFUSION IN PRESYMPTOMATIC FTD IS ASSOCIATED WITH BEHAVIORAL MEASURES, BUT NOT COGNITIVE DEFICITS: THE GENFI STUDY. Alzheimer's and Dementia, 2017, 13, P551.	0.8	O
117	α-Synuclein Amyloids Hijack Prion Protein to Gain Cell Entry, Facilitate Cell-to-Cell Spreading and Block Prion Replication. Scientific Reports, 2017, 7, 10050.	3.3	105
118	Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with Amyotrophic Lateral Sclerosis by DNA-methylation and GWAS. Scientific Reports, 2017, 7, 8899.	3.3	30
119	The A2V mutation as a new tool for hindering $\hat{Al^2}$ aggregation: A neutron and x-ray diffraction study. Scientific Reports, 2017, 7, 5510.	3.3	9
120	[P4–189]: SYMPTOM ONSET IN GENETIC FRONTOTEMPORAL DEMENTIA. Alzheimer's and Dementia, 2017, 13, P1337.	0.8	2
121	Differential overexpression of SERPINA3 in human prion diseases. Scientific Reports, 2017, 7, 15637.	3.3	58
122	[ICâ€Pâ€079]: MULTIPLE DISTINCT ATROPHY PATTERNS FOUND IN GENETIC FRONTOTEMPORAL DEMENTIA USIN SUBTYPE AND STAGE INFERENCE (SUSTAIN). Alzheimer's and Dementia, 2017, 13, P65.	G _{0.8}	O
123	Towards an early clinical diagnosis of sporadic CJD VV2 (ataxic type). Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 764-772.	1.9	33
124	Deep Learning Representation from Electroencephalography of Early-Stage Creutzfeldt-Jakob Disease and Features for Differentiation from Rapidly Progressive Dementia. International Journal of Neural Systems, 2017, 27, 1650039.	5.2	104
125	[P1–029]: IN GENETIC FRONTOTEMPORAL DEMENTIA, FUNCTIONAL NETWORK EFFICIENCY IS MAINTAINED UNTIL THE ONSET OF SYMPTOMS: EVIDENCE FOR FUNCTIONAL RESILIENCE TO STRUCTURAL CHANGE. Alzheimer's and Dementia, 2017, 13, P244.	0.8	О
126	[ICâ€03–04]: WHITE MATTER HYPERINTENSITIES IN GENETIC FRONTOTEMPORAL DEMENTIA: A GENFI STUDY. Alzheimer's and Dementia, 2017, 13, P9.	0.8	O

#	Article	IF	CITATIONS
127	[P1–437]: PRESYMPTOMATIC WHITE MATTER INTEGRITY LOSS IN FAMILIAL FRONTOTEMPORAL DEMENTIA IN THE GENETIC FRONTOTEMPORAL DEMENTIA INITIATIVE (GENFI) COHORT: A MULTI ENTRE, CROSSâ€SECTIONA DIFFUSION TENSOR IMAGING STUDY. Alzheimer's and Dementia, 2017, 13, P449.	Abj.8	1
128	Tackling amyloidogenesis in Alzheimer's disease with A2V variants of Amyloid-β. Scientific Reports, 2016, 6, 20949.	3.3	26
129	Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Science Translational Medicine, 2016, 8, 370ra183.	12.4	120
130	Genetic Counseling and Testing for Alzheimer's Disease and Frontotemporal Lobar Degeneration: An Italian Consensus Protocol. Journal of Alzheimer's Disease, 2016, 51, 277-291.	2.6	18
131	MRI abnormalities found 1Âyear prior to symptom onset in a case of Creutzfeldt–Jakob disease. Journal of Neurology, 2016, 263, 597-599.	3.6	11
132	Analysis of Conformational Stability of Abnormal Prion Protein Aggregates across the Spectrum of Creutzfeldt-Jakob Disease Prions. Journal of Virology, 2016, 90, 6244-6254.	3.4	29
133	Cerebrospinal fluid realâ€time quakingâ€induced conversion is a robust and reliable test for sporadic creutzfeldt–jakob disease: An international study. Annals of Neurology, 2016, 80, 160-165.	5.3	107
134	Characterization of Amyloid-Î ² Deposits in Bovine Brains. Journal of Alzheimer's Disease, 2016, 51, 875-887.	2.6	6
135	A 52‥earâ€Old Man with Myoclonic Jerks. Brain Pathology, 2016, 26, 291-292.	4.1	2
136	Measles Inclusionâ€Body Encephalitis: Neuronal Phosphorylated Tau Protein is Present in the Biopsy but not in the Autoptic Specimens of the Same Patient. Brain Pathology, 2016, 26, 542-546.	4.1	2
137	Measles Inclusionâ€Body Encephalitis: Neuronal Phosphorylated Tau Protein is Present in the Biopsy but not in the Autoptic Specimens of the Same Patient. Brain Pathology, 2016, 26, 673-673.	4.1	1
138	Missense mutations in progranulin gene associated with frontotemporal lobar degeneration: study of pathogenetic features. Neurobiology of Aging, 2016, 38, 215.e1-215.e12.	3.1	16
139	The new β amyloid-derived peptide Aβ1–6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity. Neurobiology of Disease, 2016, 88, 75-84.	4.4	17
140	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380
141	The cell-permeable $\hat{Al^2}1$ -6A2VTAT(D) peptide reverts synaptopathy induced by $\hat{Al^2}1$ -42wt. Neurobiology of Disease, 2016, 89, 101-111.	4.4	19
142	Novel PSEN1 mutations (H214N and R220P) associated with familial Alzheimer's disease identified by targeted exome sequencing. Neurobiology of Aging, 2016, 40, 192.e7-192.e11.	3.1	15
143	Normal Pressure Hydrocephalus and Parkinsonism: Preliminary Data on Neurosurgical and Neurological Treatment. World Neurosurgery, 2016, 90, 348-356.	1.3	35
144	Loss of exosomes in progranulin-associated frontotemporal dementia. Neurobiology of Aging, 2016, 40, 41-49.	3.1	47

#	Article	IF	CITATIONS
145	Mirror Image of the Amyloid-β Species in Cerebrospinal Fluid and Cerebral Amyloid inÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 877-881.	2.6	9
146	Frontotemporal lobar degeneration: old knowledge and new insight into the pathogenetic mechanisms of tau mutations. Frontiers in Aging Neuroscience, 2015, 7, 192.	3.4	39
147	The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases. Frontiers in Neurology, 2015, 6, 216.	2.4	36
148	The Semantic Variant of Primary Progressive Aphasia: Clinical and Neuroimaging Evidence in Single Subjects. PLoS ONE, 2015, 10, e0120197.	2.5	41
149	Prodromal Alzheimer's Disease Presenting as Cerebral Amyloid Angiopathy-Related Inflammation with Spontaneous Amyloid-Related Imaging Abnormalities and High Cerebrospinal Fluid Anti-AÎ ² Autoantibodies. Journal of Alzheimer's Disease, 2015, 45, 363-367.	2.6	36
150	A case of progressive frontal lobe syndrome in a sporadic form of Cerebral Amyloid Angiopathy: A singular overlap with fronto-temporal dementia?. Journal of the Neurological Sciences, 2015, 359, 247-249.	0.6	2
151	Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurology, The, 2015, 14, 253-262.	10.2	432
152	Italian Frontotemporal Dementia Network (FTD Group-SINDEM): sharing clinical and diagnostic procedures in Frontotemporal Dementia in Italy. Neurological Sciences, 2015, 36, 751-757.	1.9	9
153	Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases. Neurolmage: Clinical, 2015, 7, 142-154.	2.7	12
154	Diagnostic differentiation of mild cognitive impairment due to Alzheimer's disease using a hippocampus-dependent test of spatial memory. Hippocampus, 2015, 25, 939-951.	1.9	59
155	Transgenic Fatal Familial Insomnia Mice Indicate Prion Infectivity-Independent Mechanisms of Pathogenesis and Phenotypic Expression of Disease. PLoS Pathogens, 2015, 11, e1004796.	4.7	61
156	A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiology of Aging, 2015, 36, 2904.e13-2904.e26.	3.1	48
157	Preventive study in subjects at risk of fatal familial insomnia: Innovative approach to rare diseases. Prion, 2015, 9, 75-79.	1.8	54
158	Synthetic prions with novel strain-specified properties. PLoS Pathogens, 2015, 11, e1005354.	4.7	24
159	Panencephalopathic Creutzfeldt-Jakob Disease with Distinct Pattern of Prion Protein Deposition in a Patient with D178N Mutation and Homozygosity for Valine at Codon 129 of the Prion Protein Gene. Brain Pathology, 2014, 24, 148-151.	4.1	7
160	A new APP mutation prevents synaptic degeneration in Alzheimer Disease model. Neurobiology of Aging, 2014, 35, S3-S4.	3.1	0
161	Detection of Misfolded Aβ Oligomers for Sensitive Biochemical Diagnosis of Alzheimer's Disease. Cell Reports, 2014, 7, 261-268.	6.4	154
162	Mutations in MAPT give rise to aneuploidy in animal models of tauopathy. Neurogenetics, 2014, 15, 31-40.	1.4	24

#	Article	IF	CITATIONS
163	Idiopathic progressive chorea: misnomer or still reality? A case with neuropathological disconfirmation. Neurological Sciences, 2014, 35, 1155-1156.	1.9	О
164	Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurology, The, 2014, 13, 150-158.	10.2	157
165	Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia, 2014, 55, e56-9.	5.1	50
166	The Peculiar Role of the A2V Mutation in Amyloid-β (Aβ) 1–42 Molecular Assembly. Journal of Biological Chemistry, 2014, 289, 24143-24152.	3.4	54
167	Prions in the Urine of Patients with Variant Creutzfeldt–Jakob Disease. New England Journal of Medicine, 2014, 371, 530-539.	27.0	171
168	Defined α-synuclein prion-like molecular assemblies spreading in cell culture. BMC Neuroscience, 2014, 15, 69.	1.9	66
169	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
170	Divergent Cognitive Status with the Same Braak Stage of Neurofibrillary Pathology: Does the Pattern of Amyloid-Î ² Deposits Make the Difference?. Journal of Alzheimer's Disease, 2014, 43, 375-379.	2.6	4
171	Different mutations at V363 MAPT codon are associated with atypical clinical phenotypes and show unusual structural and functional features. Neurobiology of Aging, 2014, 35, 408-417.	3.1	36
172	Expression of A2V-mutated $\hat{Al^2}$ in Caenorhabditis elegans results in oligomer formation and toxicity. Neurobiology of Disease, 2014, 62, 521-532.	4.4	30
173	A Mutation in the 5′-UTR of GRN Gene Associated with Frontotemporal Lobar Degeneration: Phenotypic Variability and Possible Pathogenetic Mechanisms. Journal of Alzheimer's Disease, 2014, 42, 939-947.	2.6	12
174	Severe microcephaly with polynodular heterotopia: a highâ€field <scp>MRI</scp> and neuropathological case study. European Journal of Neurology, 2013, 20, e81-2.	3.3	0
175	Anti–amyloid β autoantibodies in cerebral amyloid angiopathy–related inflammation: Implications for amyloidâ€modifying therapies. Annals of Neurology, 2013, 73, 449-458.	5.3	179
176	A New Face for Old Antibiotics: Tetracyclines in Treatment of Amyloidoses. Journal of Medicinal Chemistry, 2013, 56, 5987-6006.	6.4	76
177	A promising rating scale for prion disease clinical research. Nature Reviews Neurology, 2013, 9, 366-367.	10.1	4
178	Mutations in MAPT Gene Cause Chromosome Instability and Introduce Copy Number Variations Widely in the Genome. Journal of Alzheimer's Disease, 2013, 33, 969-982.	2.6	45
179	Hereditary and sporadic beta-amyloidoses. Frontiers in Bioscience - Landmark, 2013, 18, 1202.	3.0	9
180	C9ORF72 Hexanucleotide Repeat Number in Frontotemporal Lobar Degeneration: A Genotype-Phenotype Correlation Study. Journal of Alzheimer's Disease, 2013, 38, 799-808.	2.6	43

#	Article	IF	Citations
181	Therapy in Prion Diseases. Current Topics in Medicinal Chemistry, 2013, 13, 2465-2476.	2.1	41
182	A case of multiple sclerosis with pure, massive superficial demyelination. Neurology, 2012, 79, 384-386.	1.1	1
183	Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice. Prion, 2012, 6, 383-390.	1.8	25
184	Optimal Plasma Progranulin Cutoff Value for Predicting Null Progranulin Mutations in Neurodegenerative Diseases: A Multicenter Italian Study. Neurodegenerative Diseases, 2012, 9, 121-127.	1.4	88
185	Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein. Journal of General Virology, 2012, 93, 1624-1629.	2.9	78
186	MM2â€Thalamic Creutzfeldt–Jakob Disease: Neuropathological, Biochemical and Transmission Studies Identify a Distinctive Prion Strain. Brain Pathology, 2012, 22, 662-669.	4.1	62
187	Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurology, The, 2012, 11, 618-628.	10.2	319
188	Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathologica, 2012, 124, 517-529.	7.7	184
189	APP mutations in the ${\rm A}\hat{\rm I}^2$ coding region are associated with abundant cerebral deposition of ${\rm A}\hat{\rm I}^2$ 38. Acta Neuropathologica, 2012, 124, 809-821.	7.7	34
190	Stereotypic behaviors in degenerative dementias. Journal of Neurology, 2012, 259, 2452-2459.	3.6	26
191	New mutations in MAPT gene causing frontotemporal lobar degeneration: biochemical and structural characterization. Neurobiology of Aging, 2012, 33, 834.e1-834.e6.	3.1	28
192	9 Let's treat Alzheimer's disease - genetic aspects. Neurobiology of Aging, 2012, 33, S4-S5.	3.1	0
193	Specific Recognition of Biologically Active Amyloid- \hat{l}^2 Oligomers by a New Surface Plasmon Resonance-based Immunoassay and an in Vivo Assay in Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 27796-27805.	3.4	52
194	Good gene, bad gene: New APP variant may be both. Progress in Neurobiology, 2012, 99, 281-292.	5.7	31
195	Infectivity in Skeletal Muscle of Cattle with Atypical Bovine Spongiform Encephalopathy. PLoS ONE, 2012, 7, e31449.	2.5	23
196	The Contribution of the Amyloid Hypothesis to the Understanding of Alzheimer's Disease: A Critical Overview. International Journal of Alzheimer's Disease, 2012, 2012, 1-2.	2.0	1
197	Constant Transmission Properties of Variant Creutzfeldt-Jakob Disease in 5 Countries. Emerging Infectious Diseases, 2012, 18, 1574-1579.	4.3	22
198	Lewy body pathology and typical Parkinson disease in a patient with a heterozygous (R275W) mutation in the Parkin gene (PARK2). Acta Neuropathologica, 2012, 123, 901-903.	7.7	22

#	Article	IF	CITATIONS
199	Atypical tauopathy in a patient with ⟨i>LRRK2⟨ i>â€G2019S mutation and tremorâ€dominant Parkinsonism. Neuropathology and Applied Neurobiology, 2012, 38, 382-386.	3.2	23
200	Memantine effects on behaviour in moderately severe to severe Alzheimer's disease: a post-marketing surveillance study. Neurological Sciences, 2012, 33, 23-31.	1.9	34
201	A progranulin mutation associated with cortico-basal syndrome in an Italian family expressing different phenotypes of fronto-temporal lobar degeneration. Neurological Sciences, 2012, 33, 93-97.	1.9	11
202	Position paper of the Italian Society for the study of Dementias (Sindem) on the proposal of a new Lexicon on Alzheimer disease. Neurological Sciences, 2012, 33, 201-208.	1.9	6
203	Lipofuscin Hypothesis of Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders Extra, 2011, 1, 292-296.	1.3	30
204	An APOE Haplotype Associated with Decreased $\hat{l}\mu 4$ Expression Increases the Risk of Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 235-245.	2.6	58
205	Lower limb areflexia without central and peripheral conduction abnormalities is highly suggestive of Gerstmann–StrÃ ¤ ssler–Scheinker disease Pro102Leu. Journal of the Neurological Sciences, 2011, 302, 85-88.	0.6	6
206	Tetracycline prevents $\hat{Al^2}$ oligomer toxicity through an atypical supramolecular interaction. Organic and Biomolecular Chemistry, 2011, 9, 463-472.	2.8	52
207	A Novel Progranulin Mutation Causing Frontotemporal Lobar Degeneration with Heterogeneous Phenotypic Expression. Journal of Alzheimer's Disease, 2011, 23, 7-12.	2.6	18
208	A Novel Pathogenic PSEN1 Mutation in a Family with Alzheimer's Disease: Phenotypical and Neuropathological Features. Journal of Alzheimer's Disease, 2011, 25, 425-431.	2.6	14
209	Variability of the Clinical Phenotype in an Italian Family with Dementia Associated with an Intronic Deletion in the GRN Gene. Journal of Alzheimer's Disease, 2011, 26, 583-590.	2.6	11
210	Anti-Al 2 autoantibodies in the CSF of a patient with CAA-related inflammation: A case report. Neurology, 2011, 76, 842-844.	1.1	88
211	Failure to Replicate an Association of rs5984894 SNP in the PCDH11X Gene in a Collection of 1,222 Alzheimer's Disease Affected Patients. Journal of Alzheimer's Disease, 2010, 21, 385-388.	2.6	11
212	Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features. Acta Neuropathologica, 2010, 120, 803-812.	7.7	61
213	Variably proteaseâ€sensitive prionopathy: A new sporadic disease of the prion protein. Annals of Neurology, 2010, 68, 162-172.	5.3	203
214	Myoclonus in Creutzfeldtâ€Jakob disease: Polygraphic and videoâ€electroencephalography assessment of 109 patients. Movement Disorders, 2010, 25, 2818-2827.	3.9	27
215	Neocortical Variation of $\hat{Al^2}$ Load in Fully Expressed, Pure Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 19, 57-68.	2.6	19
216	Hereditary Cerebral Hemorrhage With Amyloidosis Associated With the E693K Mutation of APP. Archives of Neurology, 2010, 67, 987-95.	4.5	87

#	Article	IF	Citations
217	A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles. Nanoscale, 2010, 2, 2724.	5.6	30
218	Tetracyclines and Prion Infectivity. Infectious Disorders - Drug Targets, 2009, 9, 23-30.	0.8	48
219	Complexes of Amyloid- \hat{l}^2 and Cystatin C in the Human Central Nervous System. Journal of Alzheimer's Disease, 2009, 18, 273-280.	2.6	28
220	A Novel Italian Presenilin 2 Gene Mutation with Prevalent Behavioral Phenotype. Journal of Alzheimer's Disease, 2009, 16, 509-511.	2.6	39
221	Mutant Presenilin 1 Increases the Expression and Activity of BACE1. Journal of Biological Chemistry, 2009, 284, 9027-9038.	3.4	42
222	An atypical case of sporadic fatal insomnia. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 924-927.	1.9	6
223	Creutzfeldt–Jakob disease with E200K PRNP mutation: a case report and revision of the literature. Neurological Sciences, 2009, 30, 417-420.	1.9	17
224	Regression of chronic posterior leukoencephalopathy after stop of methotrexate treatment. Neurological Sciences, 2009, 30, 375-378.	1.9	13
225	Interâ€Laboratory Assessment of PrP ^{Sc} Typing in Creutzfeldt–Jakob Disease: A Western Blot Study within the NeuroPrion Consortium. Brain Pathology, 2009, 19, 384-391.	4.1	50
226	The behavioural features of fatal familial insomnia: A new Italian case with pathological verification. Sleep Medicine, 2009, 10, 581-585.	1.6	10
227	APE1/Ref-1 in Alzheimer's disease: An immunohistochemical study. Neuroscience Letters, 2009, 466, 124-127.	2.1	34
228	Memantine in Moderately-Severe-to-Severe Alzheimerʽs Disease. Drugs and Aging, 2009, 26, 321-332.	2.7	18
229	A Recessive Mutation in the APP Gene with Dominant-Negative Effect on Amyloidogenesis. Science, 2009, 323, 1473-1477.	12.6	357
230	A novel phenotype of sporadic Creutzfeldt-Jakob disease. BMJ Case Reports, 2009, 2009, bcr0920080945-bcr0920080945.	0.5	0
231	The anti-fibrillogenic activity of tetracyclines on PrP 106–126: a 3D-QSAR study. Journal of Molecular Modeling, 2008, 14, 987-994.	1.8	20
232	Atypical frontotemporal dementia as a new clinical phenotype of Gerstmann-Straussler-Scheinker disease with the PrP-P102L mutation. Description of a previously unreported Italian family. Neurological Sciences, 2008, 29, 405-410.	1.9	28
233	Inter-laboratory comparison of neuropathological assessments of \hat{l}^2 -amyloid protein: a study of the BrainNet Europe consortium. Acta Neuropathologica, 2008, 115, 533-546.	7.7	86
234	The G389R mutation in the <i>MAPT</i> gene presenting as sporadic corticobasal syndrome. Movement Disorders, 2008, 23, 892-895.	3.9	43

#	Article	IF	Citations
235	Staging of Neurofibrillary Pathology in Alzheimer's Disease: A Study of the BrainNet Europe Consortium. Brain Pathology, 2008, 18, 484-496.	4.1	361
236	Atypical tauopathy with massive involvement of the white matter. Neuropathology and Applied Neurobiology, 2008, 34, 468-472.	3.2	23
237	Atypical presentation of Creutzfeldt–Jakob disease: The first Italian case associated with E196K mutation in the PRNP gene. Journal of the Neurological Sciences, 2008, 275, 145-147.	0.6	25
238	Conformational Plasticity of the Gerstmann–Strässler–Scheinker Disease Peptide as Indicated by Its Multiple Aggregation Pathways. Journal of Molecular Biology, 2008, 381, 1349-1361.	4.2	56
239	Tauopathy in human and experimental variant Creutzfeldt-Jakob disease. Neurobiology of Aging, 2008, 29, 1864-1873.	3.1	51
240	Mutant Prion Protein Expression Causes Motor and Memory Deficits and Abnormal Sleep Patterns in a Transgenic Mouse Model. Neuron, 2008, 60, 598-609.	8.1	97
241	A new function of microtubule-associated protein tau: Involvement in chromosome stability. Cell Cycle, 2008, 7, 1788-1794.	2.6	89
242	A novel <i>PSEN2</i> mutation associated with a peculiar phenotype. Neurology, 2008, 70, 1549-1554.	1.1	62
243	Intraspecies Transmission of BASE Induces Clinical Dullness and Amyotrophic Changes. PLoS Pathogens, 2008, 4, e1000075.	4.7	75
244	A novel insertional mutation in the prion protein gene: clinical and bio-molecular findings. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 1395-1398.	1.9	16
245	The Efficacy of Tetracyclines in Peripheral and Intracerebral Prion Infection. PLoS ONE, 2008, 3, e1888.	2.5	94
246	300 HEMIZYGOUS PRION PROTEIN GENE (PRNP) KNOCKOUT IN CATTLE FIBROBLASTS. Reproduction, Fertility and Development, 2008, 20, 230.	0.4	0
247	Neurotoxic and Gliotrophic Activity of a Synthetic Peptide Homologous to Gerstmann-Straussler-Scheinker Disease Amyloid Protein. Journal of Neuroscience, 2007, 27, 1576-1583.	3.6	35
248	Conversion of the BASE Prion Strain into the BSE Strain: The Origin of BSE?. PLoS Pathogens, 2007, 3, e31.	4.7	146
249	A novel phenotype of sporadic Creutzfeldt Jakob disease. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1379-1382.	1.9	15
250	The ε Isoform of 14-3-3 Protein Is a Component of the Prion Protein Amyloid Deposits of Gerstmann-Strässler-Scheinker Disease. Journal of Neuropathology and Experimental Neurology, 2007, 66, 124-130.	1.7	15
251	Polyanion induced fibril growth enables the development of a reproducible assay in solution for the screening of fibril interfering compounds, and the investigation of the prion nucleation site. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2007, 14, 205-219.	3.0	3
252	Tauopathy in human and experimental variant Creutzfeldt-Jakob disease. Journal of Neuropathology and Experimental Neurology, 2007, 66, 430.	1.7	0

#	Article	IF	CITATIONS
253	Pathologic prion protein is specifically recognized in situ by a novel PrP conformational antibody. Neurobiology of Disease, 2006, 23, 717-724.	4.4	22
254	Periodic electroencephalogram complexes in a patient with variant Creutzfeldt–Jakob disease. Annals of Neurology, 2006, 59, 423-427.	5.3	39
255	Cognitive Deficits in Familial Alzheimer's Disease Associated with M239V Mutation of Presenilin 2. Dementia and Geriatric Cognitive Disorders, 2006, 22, 238-243.	1.5	11
256	Gerstmann-Strässler-Scheinker Disease Amyloid Protein Polymerizes According to the "Dock-and-Lock―Model. Journal of Biological Chemistry, 2006, 281, 843-849.	3.4	33
257	Sporadic Creutzfeldt-Jakob Disease: The Extent of Microglia Activation Is Dependent on the Biochemical Type of PrPSc. Journal of Neuropathology and Experimental Neurology, 2005, 64, 902-909.	1.7	33
258	Redox metals and oxidative abnormalities in human prion diseases. Acta Neuropathologica, 2005, 110, 232-238.	7.7	52
259	Familial frontotemporal dementia associated with the novel MAPT mutation T427M. Journal of Neurology, 2005, 252, 1543-1545.	3.6	13
260	Role of Plasminogen in Propagation of Scrapie. Journal of Virology, 2005, 79, 11225-11230.	3.4	18
261	FVEPs in Creutzfeldt–Jacob disease: waveforms and interaction with the periodic EEG pattern assessed by single sweep analysis. Clinical Neurophysiology, 2005, 116, 895-904.	1.5	4
262	Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q. Neurobiology of Disease, 2005, 19, 273-282.	4.4	21
263	Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Letters, 2005, 579, 638-642.	2.8	127
264	Hereditary Prion Protein Amyloidoses. , 2005, , 83-109.		1
265	Identification of a second bovine amyloidotic spongiform encephalopathy: Molecular similarities with sporadic Creutzfeldt-Jakob disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3065-3070.	7.1	402
266	Neuropathological and Clinical Phenotype of an Italian Alzheimer Family with M239V Mutation of Presenilin 2 Gene. Journal of Neuropathology and Experimental Neurology, 2004, 63, 199-209.	1.7	39
267	Progressive supranuclear palsy and Parkinson's disease in a family with a new mutation in the tau gene. Annals of Neurology, 2004, 55, 448-448.	5. 3	30
268	Prion deposition in olfactory biopsy of sporadic Creutzfeldt-Jakob disease. Annals of Neurology, 2004, 55, 294-296.	5. 3	57
269	P3-357 Structural properties of gerstmann-StrÃ ¤ ssler-Scheinker disease amyloid protein. Neurobiology of Aging, 2004, 25, S457.	3.1	0
270	P4-415 ST1859 reduces prion infectivity and increase survival in experimental scrapie. Neurobiology of Aging, 2004, 25, S592.	3.1	0

#	Article	IF	CITATIONS
271	P3-332 Familial frontotemporal dementia associated with the novel tau mutation T427M. Neurobiology of Aging, 2004, 25, S449-S450.	3.1	1
272	P3-382 Insertional mutation in the prion protein gene presenting with Schizophrenia. Neurobiology of Aging, 2004, 25, S464.	3.1	1
273	Sporadic Creutzfeldt-Jakob disease with MM1-type prion protein and plaques. Neurology, 2004, 62, 1239-1239.	1.1	10
274	A family with Alzheimer disease and strokes associated with A713T mutation of the APP gene. Neurology, 2004, 63, 910-912.	1.1	66
275	Cytotoxicity of PrP Peptides. , 2004, , 176-197.		1
276	Amyloid β plaque-associated proteins C1q and SAP enhance the Aβ1–42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathologica, 2003, 105, 135-144.	7.7	129
277	Hereditary prion protein amyloidoses. Clinics in Laboratory Medicine, 2003, 23, 65-85.	1.4	66
278	Therapeutic approaches to prion diseases. Clinics in Laboratory Medicine, 2003, 23, 187-208.	1.4	14
279	Creutzfeldt-Jakob disease with a novel extra-repeat insertional mutation in the <i>PRNP</i> gene. Neurology, 2003, 61, 1288-1291.	1.1	31
280	Evaluation of Quinacrine Treatment for Prion Diseases. Journal of Virology, 2003, 77, 8462-8469.	3.4	190
281	Structural Properties of Gerstmann-Strässler-Scheinker Disease Amyloid Protein. Journal of Biological Chemistry, 2003, 278, 48146-48153.	3.4	75
282	A Case of Dementia Parkinsonism Resembling Progressive Supranuclear Palsy Due to Mutation in the Tau Protein Gene. Archives of Neurology, 2003, 60, 1454.	4.5	35
283	Channels formed with a mutant prion protein PrP(82-146) homologous to a 7-kDa fragment in diseased brain of GSS patients. American Journal of Physiology - Cell Physiology, 2003, 285, C862-C872.	4.6	53
284	Prion Diseases: Time for a Therapy?. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2003, 3, 185-197.	0.2	10
285	Tetracyclines affect prion infectivity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10849-10854.	7.1	184
286	Synthetic Miniprion PrP106. Journal of Biological Chemistry, 2002, 277, 31327-31334.	3.4	32
287	p38 MAP Kinase Mediates the Cell Death Induced by PrP106–126 in the SH-SY5Y Neuroblastoma Cells. Neurobiology of Disease, 2002, 9, 69-81.	4.4	59
288	Oxidative Damage to Nucleic Acids in Human Prion Disease. Neurobiology of Disease, 2002, 9, 275-281.	4.4	68

#	Article	IF	Citations
289	Anti-amyloidogenic effect of tetracyclines in Prion and Alzheimer disease models. European Neuropsychopharmacology, 2002, 12, 91.	0.7	1
290	Expression in E. coli and purification of recombinant fragments of wild type and mutant human prion protein. Neurochemistry International, 2002, 41, 55-63.	3.8	31
291	Prion Proteins with Different Conformations Accumulate in Gerstmann-StrÃ u ssler-Scheinker Disease Caused by A117V and F198S Mutations. American Journal of Pathology, 2001, 158, 2201-2207.	3.8	83
292	Antiâ€amyloidogenic activity of tetracyclines: studies in vitro. FEBS Letters, 2001, 487, 404-407.	2.8	205
293	Studies on peptide fragments of prion proteins. Advances in Protein Chemistry, 2001, 57, 171-201.	4.4	42
294	Codeposition of Cystatin C with Amyloid- \hat{l}^2 Protein in the Brain of Alzheimer Disease Patients. Journal of Neuropathology and Experimental Neurology, 2001, 60, 94-104.	1.7	154
295	Ectopic White Matter Neurons, a Developmental Abnormality That May Be Caused by the <i>PSEN1 < i>S169L Mutation in a Case of Familial AD with Myoclonus and Seizures. Journal of Neuropathology and Experimental Neurology, 2001, 60, 1137-1152.</i>	1.7	47
296	The Stimulation of Inducible Nitric-oxide Synthase by the Prion Protein Fragment 106–126 in Human Microglia Is Tumor Necrosis Factor-α-dependent and Involves p38 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 2001, 276, 25692-25696.	3.4	60
297	A 7-kDa Prion Protein (PrP) Fragment, an Integral Component of the PrP Region Required for Infectivity, Is the Major Amyloid Protein in Gerstmann-StrÃ u ssler-Scheinker Disease A117V. Journal of Biological Chemistry, 2001, 276, 6009-6015.	3.4	119
298	Neuropathology of Gerstmann-Str�ussler-Scheinker disease. Microscopy Research and Technique, 2000, 50, 10-15.	2.2	53
299	Polymorphism at codon 129 ofPRNP affects the phenotypic expression of Creutzfeldt-Jakob disease linked to E200K mutation. Annals of Neurology, 2000, 48, 269-270.	5.3	30
300	Creutzfeldt–Jakob disease with a novel four extra-repeat insertional mutation in the PrP gene. Neurology, 2000, 55, 405-410.	1.1	49
301	Tetracycline affects abnormal properties of synthetic PrP peptides and PrPSc in vitro11Edited by J. Karn. Journal of Molecular Biology, 2000, 300, 1309-1322.	4.2	155
302	Apoptotic Cell Death and Impairment of L-Type Voltage-Sensitive Calcium Channel Activity in Rat Cerebellar Granule Cells Treated with the Prion Protein Fragment 106–126. Neurobiology of Disease, 2000, 7, 299-309.	4.4	64
303	Neurotoxicity of the Putative Transmembrane Domain of the Prion Protein. Neurobiology of Disease, 2000, 7, 644-656.	4.4	43
304	Reversion of prion protein conformational changes by synthetic b-sheet breaker peptides. Lancet, The, 2000, 355, 192-197.	13.7	280
305	Measurement of intracellular calcium levels by the fluorescent Ca2+ indicator Calcium-Green. Brain Research Protocols, 2000, 5, 132-134.	1.6	13
306	Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106–126. International Journal of Developmental Neuroscience, 2000, 18, 481-492.	1.6	56

#	Article	IF	CITATIONS
307	Comment on: Neurotoxicity of prion peptide 106-126 not confirmed, by Beat Kunz, Erika Sandmeier, Philipp Christen. FEBS Letters, 2000, 466, 205-206.	2.8	7
308	Creutzfeldtâ€Jakob Disease: Carnoy's Fixative Improves the Immunohistochemistry of the Proteinase K― Resistant Prion Protein. Brain Pathology, 2000, 10, 31-37.	4.1	49
309	Substitutions at Codon 22 of Alzheimer's \widehat{Al}^2 Peptide Induce Diverse Conformational Changes and Apoptotic Effects in Human Cerebral Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 27110-27116.	3.4	178
310	Sporadic Creutzfeldt-Jakob disease: Co-occurrence of different types of PrP ^{Sc} in the same brain. Neurology, 1999, 53, 2173-2173.	1.1	185
311	Determination of solution conformations of PrP106-126, a neurotoxic fragment of prion protein, by1H NMR and restrained molecular dynamics. FEBS Journal, 1999, 266, 1192-1201.	0.2	32
312	Activation of microglial cells by PrP and \hat{l}^2 -amyloid fragments raises intracellular calcium through L-type voltage sensitive calcium channels. Brain Research, 1999, 818, 168-170.	2.2	101
313	A \hat{I}^2 PP Peptide Carboxyl-Terminal to A \hat{I}^2 Is Neurotoxic. American Journal of Pathology, 1999, 154, 1001-1007.	3.8	18
314	Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106â€'126. Biochemical Journal, 1999, 342, 207.	3.7	36
315	Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106–126. Biochemical Journal, 1999, 342, 207-214.	3.7	100
316	NEUROPATHOLOGICAL CORRELATES OF MAGNETIC RESONANCE ABNORMALITIES IN EXPERIMENTAL PRION DISEASE. Journal of Neuropathology and Experimental Neurology, 1999, 58, 560.	1.7	5
317	Frontotemporal Dementia and Corticobasal Degeneration in a Family with a P301S Mutation in Tau. Journal of Neuropathology and Experimental Neurology, 1999, 58, 667-677.	1.7	381
318	Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. NeuroReport, 1999, 10, 723-729.	1.2	109
319	Prion protein fragment 106-126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. , 1998, 54, 341-352.		73
320	Endogenous Proteolytic Cleavage of Normal and Disease-Associated Isoforms of the Human Prion Protein in Neural and Non-Neural Tissues. American Journal of Pathology, 1998, 153, 1561-1572.	3.8	165
321	Fatal familial insomnia. Neurology, 1998, 50, 688-692.	1.1	50
322	PRION PROTEIN ISOFORMS IN THE NEW VARIANT OF GERSTMAN-STRÄUSSLER-SCHEINKER DISEASE Q212P. Journal of Neuropathology and Experimental Neurology, 1998, 57, 518.	1.7	6
323	PRION PROTEIN IMMUNOHISTOCHEMISTRY IN CREUTZFELDT-JAKOB DISEASE. Journal of Neuropathology and Experimental Neurology, 1998, 57, 493.	1.7	0
324	Phenotypic Variability of Gerstmann-Straussler-Scheinker Disease is Associated with Prion Protein Heterogeneity. Journal of Neuropathology and Experimental Neurology, 1998, 57, 979-988.	1.7	182

#	Article	IF	CITATIONS
325	PrP Peptides as a Tool to Investigate the Pathogenesis of Prion Protein Amyloidoses. , 1998, , 285-289.		0
326	Anthracyclines and Amyloidosis. Advances in Behavioral Biology, 1998, , 197-204.	0.2	0
327	ANTHRACYCLINES EFFECTIVE AGAINST EXPERIMENTAL SCRAPIE. Journal of Neuropathology and Experimental Neurology, 1997, 56, 595.	1.7	0
328	Effectiveness of Anthracycline Against Experimental Prion Disease in Syrian Hamsters. Science, 1997, 276, 1119-1121.	12.6	168
329	A Neurotoxic and Gliotrophic Fragment of the Prion Protein Increases Plasma Membrane Microviscosity. Neurobiology of Disease, 1997, 4, 47-57.	4.4	60
330	Diffuse thalamic degeneration in fatal familial insomnia. A morphometric study. Brain Research, 1997, 771, 154-158.	2.2	34
331	CHARACTERISTICS AND DISTRIBUTION OF PrP IN THE NEW VARIANT OF CREUTZFELDT-JAKOB DISEASE. Journal of Neuropathology and Experimental Neurology, 1997, 56, 595.	1.7	0
332	Amyloid in alzheimer's disease and prion-related encephalopathies: Studies with synthetic peptides. Progress in Neurobiology, 1996, 49, 287-315.	5.7	54
333	Prion protein hereditary amyloidosis: parenchymal and vascular. Seminars in Virology, 1996, 7, 189-200.	3.9	11
334	PRP27–30Is a Normal Soluble Prion Protein Fragment Released by Human Platelets. Biochemical and Biophysical Research Communications, 1996, 223, 572-577.	2.1	86
335	Intracellular Calcium Rise through L-Type Calcium Channels, as Molecular Mechanism for Prion Protein Fragment 106-126-Induced Astroglial Proliferation. Biochemical and Biophysical Research Communications, 1996, 228, 397-405.	2.1	76
336	Spontaneous spongiform encephalopathy in a young adult rhesus monkey. Lancet, The, 1996, 348, 55.	13.7	19
337	Proteinase-K-Resistant Prion Protein Isoforms in Gerstmann-StrÃ u ssler-Scheinker Disease (Indiana) Tj ETQq1 1 0.	784314 rg 1.7	BT_/Overlock
338	Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 744-748.	7.1	270
339	TOPOGRAPHY OF PHOSPHORYLATED TAU IMMUNOREACTIVITY IN ALZHEIMER DISEASE, PROGRESSIVE SUPRANUCLEAR PALSY AND PICK DISEASE. Journal of Neuropathology and Experimental Neurology, 1996, 55, 634.	1.7	0
340	Activation effects of a prion protein fragment [PrP-(106-126)] on human leucocytes. Biochemical Journal, 1996, 320, 563-570.	3.7	49
341	Apoptosis-mediated neurotoxicity induced by \hat{l}^2 -amyloid and PRP fragments. Molecular and Chemical Neuropathology, 1996, 28, 163-171.	1.0	90
342	Prion Protein Amyloidosis. Brain Pathology, 1996, 6, 127-145.	4.1	185

#	Article	IF	CITATIONS
343	Clusterin (SGP-2) Induction in Rat Astroglial Cells Exposed to Prion Protein Fragment 106-126. European Journal of Neuroscience, 1996, 8, 589-597.	2.6	37
344	ONLY MUTANT PRP PARTICIPATES IN AMYLOID FORMATION IN GERSTMANN-STRÃ, USSLER-SCHEINKER DISEASE WITH ALA>VAL SUBSTITUTION AT CODON 117. Journal of Neuropathology and Experimental Neurology, 1995, 54, 416.	1.7	10
345	A PRION PROTEIN FRAGMENT MODIFIES PLASMA MEMBRANE VISCOSITY AND INTRACELLULAR. CALCIUM LEVEL. Journal of Neuropathology and Experimental Neurology, 1995, 54, 449.	1.7	3
346	Gerstmann-StrÄ u ssler-Scheinker Disease (PRNP P102L): Amyloid Deposits Are Best Recognized by Antibodies Directed to Epitopes in PrP Region 90-165. Journal of Neuropathology and Experimental Neurology, 1995, 54, 790-801.	1.7	36
347	Tau protein directly interacts with the amyloid \hat{l}^2 -protein precursor: Implications for Alzheimer's disease. Nature Medicine, 1995, 1, 365-369.	30.7	81
348	Generalized lysosomal storage in Yunis Var $ ilde{A}^3$ n syndrome. Neuromuscular Disorders, 1995, 5, 423-428.	0.6	17
349	Gerstmannâ€Strässlerâ€Scheinker Disease and the Indiana Kindred. Brain Pathology, 1995, 5, 61-75.	4.1	145
350	Familial Gerstmann-Strässler-Scheinker disease with neurofibrillary tangles. Molecular Neurobiology, 1994, 8, 41-48.	4.0	71
351	A Neurotoxic Prion Protein Fragment Induces Rat Astroglial Proliferation and Hypertrophy. European Journal of Neuroscience, 1994, 6, 1415-1422.	2.6	112
352	Amyloid fibrils in Gerstmann-StrÄ u ssler-Scheinker disease (Indiana and Swedish Kindreds) express only PrP peptides encoded by the mutant allele. Cell, 1994, 79, 695-703.	28.9	152
353	Neurodegenerative effects induced by \hat{l}^2 -amyloid and PRP peptides: Similarities and differences. Neurobiology of Aging, 1994, 15, S87.	3.1	0
354	Apolipoprotein E and J immunoreactivity in Gerstmann-StrÃ u ssler-Scheinker disease. Neurobiology of Aging, 1994, 15, S156-S157.	3.1	12
355	Cerebrospinal fluid levels of amyloid βâ€protein precursor are low in Gerstmannâ€Stral^usslerâ€Scheinker disease, Indiana kindred. Neurology, 1994, 44, 1508-1508.	1.1	2
356	Ubiquitinated neurites are associated with preamyloid and cerebral amyloid? deposits in patients with hereditary cerebral hemorrhage with amyloidosis Dutch type. Acta Neuropathologica, 1993, 85, 267-71.	7.7	16
357	Neurotoxicity of a prion protein fragment. Nature, 1993, 362, 543-546.	27.8	935
358	A68 is a component of paired helical filaments of Gerstmann-Strässler-Scheinker disease, Indiana kindred. Brain Research, 1993, 616, 325-329.	2.2	54
359	Molecular Characteristics of a Protease-Resistant, Amyloidogenic and Neurotoxic Peptide Homologous to Residues 106-126 of the Prion Protein. Biochemical and Biophysical Research Communications, 1993, 194, 1380-1386.	2.1	212
360	Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9678-9682.	7.1	242

#	Article	IF	CITATIONS
361	IN VITRO NEUROTOXICITY OF A FRAGMENT OF THE PRION PROTEIN. Journal of Neuropathology and Experimental Neurology, 1993, 52, 293.	1.7	O
362	ßPP Participates in PrP-Amyloid Plaques of Gerstmann-Strässler-Scheinker Disease, Indiana Kindred. Journal of Neuropathology and Experimental Neurology, 1993, 52, 64-70.	1.7	49
363	Apoptosis mediated neurotoxicity induced by chronic application of β amyloid fragment 25–35. NeuroReport, 1993, 4, 523-526.	1.2	355
364	EXPERIMENTAL (HAMSTER) SCRAPIE. Journal of Neuropathology and Experimental Neurology, 1993, 52, 294.	1.7	2
365	Fatal familial insomnia. Neurology, 1992, 42, 312-312.	1.1	211
366	Prion protein preamyloid and amyloid deposits in Gerstmann-Straussler-Scheinker disease, Indiana kindred Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9349-9353.	7.1	84
367	A soluble form of prion protein in human cerebrospinal fluid: Implications for prion-related encephalopathies. Biochemical and Biophysical Research Communications, 1992, 184, 1398-1404.	2.1	90
368	Alzheimer patients: Preamyloid deposits are immunoreactive with antibodies to extracellular domains of the amyloid precursor protein. Neuroscience Letters, 1991, 128, 117-120.	2.1	16
369	Relationship between non-fibrillary amyloid precursors and cell processes in the cortical neuropil of Alzheimer patients. Neuroscience Letters, 1991, 129, 119-122.	2.1	18
370	Amyloid protein of Gerstmann-Str \tilde{A} ussler-Scheinker disease (Indiana kindred) is an 11 kd fragment of prion protein with an N-terminal glycine at codon 58 EMBO Journal, 1991, 10, 513-519.	7.8	174
371	Preamyloid Deposits, Amyloid Deposits, and Senile Plaques in Alzheimer's Disease, Down Syndrome, and Aging. Annals of the New York Academy of Sciences, 1991, 640, 122-128.	3.8	14
372	ALZHEIMER'S DISEASE AND HEREDITARY (DUTCH-TYPE) CEREBRAL HEMORRHAGE. Journal of Neuropathology and Experimental Neurology, 1990, 49, 332.	1.7	1
373	CEREBRAL PREAMYLOID DEPOSITS AND CONGOPHILIC ANGIOPATHY IN AGED DOGS. Journal of Neuropathology and Experimental Neurology, 1990, 49, 331.	1.7	0
374	Changes in excitability of CA1 pyramidal neurons in slices prepared from AlCl3-treated rabbits. Epilepsy Research, 1990, 6, 39-48.	1.6	15
375	Synaptic alterations in preamyloid deposits. Neurobiology of Aging, 1990, 11, 310.	3.1	0
376	Alzheimer patients and Down patients: Abnormal presynaptic terminals are related to cerebral preamyloid deposits. Neuroscience Letters, 1990, 119, 56-59.	2.1	55
377	Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neuroscience Letters, 1990, 114, 178-183.	2.1	89
378	Parenchymal preamyloid and amyloid deposits in the brains of patients with hereditary cerebral hemorrhage with amyloidosisâ€"Dutch type. Neuroscience Letters, 1990, 118, 223-226.	2.1	47

#	Article	IF	Citations
379	Neurofibrillary tangles of the Indiana kindred of Gerstmann-Stra¨ussler-Scheinker disease share antigenic determinants with those of Alzheimer disease. Brain Research, 1990, 530, 325-329.	2.2	71
380	Alzheimer patients: preamyloid deposits are more widely distributed than senile plaques throughout the central nervous system. Neuroscience Letters, 1989, 103, 263-268.	2.1	58
381	Alzheimer patients and Down patients: Cerebral preamyloid deposits differ ultrastructurally and histochemically from the amyloid of senile plaques. Neuroscience Letters, 1989, 105, 294-299.	2.1	87
382	Alzheimer's disease amyloid precursor protein is present in senile plaques and cerebrospinal fluid: Immunohistochemical and biochemical characterization. Biochemical and Biophysical Research Communications, 1989, 163, 430-437.	2.1	63
383	Down patients: Extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neuroscience Letters, 1989, 97, 232-238.	2.1	242
384	Gerstmannâ€Stral`usslerâ€Scheinker disease II. Neurofibrillary tangles and plaques with PrPâ€amyloid coexist in an affected family. Neurology, 1989, 39, 1453-1453.	1.1	161
385	Progressive supranuclear palsy with hypertrophy of the olives. Acta Neuropathologica, 1988, 77, 14-20.	7.7	22
386	Preamyloid deposits in the cerebral cortex of patients with Alzheimer's disease and nondemented individuals. Neuroscience Letters, 1988, 93, 191-196.	2.1	274
387	PROGRESSIVE SUPRANUCLEAR PALSY (PSP). Journal of Neuropathology and Experimental Neurology, 1987, 46, 387.	1.7	1
388	ASTROCYTOSIS AND SPONGIFORM CHANGES OF THE WHITE MATTER IN CREUTZFELDT-JAKOB DISEASE (CJ). Journal of Neuropathology and Experimental Neurology, 1987, 46, 387.	1.7	0
389	ALZHEIMER'S DISEASE (AD). Journal of Neuropathology and Experimental Neurology, 1986, 45, 361.	1.7	0
390	Mammillo-hypophyseal duplication (diplo-mammillo-hypophysis). Acta Neuropathologica, 1986, 69, 38-44.	7.7	17
391	ASYMMETRIC CEREBRAL ATROPHY IN ALZHEIMER'S DISEASE. Journal of Neuropathology and Experimental Neurology, 1986, 45, 342.	1.7	1
392	Neuronal loss in the basal nucleus of Meynert in a patient with olivopontocerebellar atrophy. Acta Neuropathologica, 1985, 66, 127-133.	7.7	25
393	The basal nucleus of Meynert in patients with progressive supranuclear palsy. Neuroscience Letters, 1984, 44, 37-42.	2.1	82
394	The basal nucleus of Meynert in idiopathic Parkinson's disease. Acta Neurologica Scandinavica, 1984, 70, 20-28.	2.1	42
395	Creutzfeldt-Jakob disease: Clinical, EEG and neuropathological findings in a cluster of eleven patients. Italian Journal of Neurological Sciences, 1983, 4, 47-59.	0.1	14
396	Neuronal loss in the basal nucleus of meynert in progressive supranuclear palsy. Acta Neuropathologica, 1983, 61, 157-160.	7.7	58

#	Article	IF	CITATIONS
397	NEURONAL COUNTS IN BASAL NUCLEUS OF MEYNERT IN ALZHEIMER DISEASE AND IN SIMPLE SENILE DEMENTIA. Lancet, The, 1983, 321, 469-470.	13.7	81
398	Basal nucleus of meynert. Journal of the Neurological Sciences, 1983, 62, 243-260.	0.6	125
399	Anderson-Fabry's disease: Neuropathological and neurochemical investigation. Acta Neuropathologica, 1982, 56, 93-98.	7.7	35
400	Therapeutic Approaches to Prion Diseases: In Vitro Studies with Tetracycline Compounds., 0,, 809-820.		1
401	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, 0, , .	0.4	1