
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678649/publications.pdf Version: 2024-02-01



MADTA RIBASES

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature<br>Genetics, 2013, 45, 984-994.                                                                                | 21.4 | 2,067     |
| 2  | Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder.<br>Nature Genetics, 2019, 51, 63-75.                                                                    | 21.4 | 1,594     |
| 3  | Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.                                                                                         | 21.4 | 1,191     |
| 4  | Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nature Genetics, 2018, 50, 524-537.                                             | 21.4 | 1,124     |
| 5  | Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .                                                                                                                        | 12.6 | 1,085     |
| 6  | Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders.<br>Cell, 2019, 179, 1469-1482.e11.                                                                           | 28.9 | 935       |
| 7  | Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways.<br>Nature Neuroscience, 2015, 18, 199-209.                                                                 | 14.8 | 701       |
| 8  | Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.                                                | 21.4 | 629       |
| 9  | Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.                                                                                          | 28.9 | 623       |
| 10 | Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics, 2018, 50, 1225-1233.                                                                                                      | 21.4 | 552       |
| 11 | GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability. Nature Neuroscience, 2018, 21, 1161-1170.                        | 14.8 | 436       |
| 12 | Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. European<br>Neuropsychopharmacology, 2018, 28, 1059-1088.                                                        | 0.7  | 398       |
| 13 | A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Molecular Psychiatry, 2010, 15, 1053-1066.                               | 7.9  | 245       |
| 14 | Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia,<br>Bipolar Disorder, and Major Depressive Disorder. American Journal of Human Genetics, 2015, 96,<br>283-294. | 6.2  | 225       |
| 15 | Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet<br>Neurology, The, 2016, 15, 174-184.                                                                   | 10.2 | 217       |
| 16 | Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Human Molecular Genetics, 2004, 13, 1205-1212.                                                         | 2.9  | 193       |
| 17 | Multicenter Analysis of the SLC6A3/DAT1 VNTR Haplotype in Persistent ADHD Suggests Differential<br>Involvement of the Gene in Childhood and Persistent ADHD. Neuropsychopharmacology, 2010, 35,<br>656-664.    | 5.4  | 180       |
| 18 | Met66 in the brain-derived neurotrophic factor (BDNF) precursor is associated with anorexia nervosa restrictive type. Molecular Psychiatry, 2003, 8, 745-751.                                                  | 7.9  | 176       |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder.<br>Biological Psychiatry, 2018, 83, 1044-1053.                                                                                | 1.3 | 146       |
| 20 | Exploration of 19 serotoninergic candidate genes in adults and children with<br>attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB. Molecular<br>Psychiatry, 2009, 14, 71-85.               | 7.9 | 141       |
| 21 | Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32 330 subjects from the International Cannabis Consortium. Translational Psychiatry, 2016, 6, e769-e769.                        | 4.8 | 136       |
| 22 | Association of BDNF with restricting anorexia nervosa and minimum body mass index: a family-based association study of eight European populations. European Journal of Human Genetics, 2005, 13, 428-434.                        | 2.8 | 131       |
| 23 | Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk<br>Factors. Biological Psychiatry, 2022, 91, 313-327.                                                                       | 1.3 | 114       |
| 24 | Association between methylation of the glucocorticoid receptor gene, childhood maltreatment, and clinical severity in borderline personality disorder. Journal of Psychiatric Research, 2014, 57, 34-40.                         | 3.1 | 105       |
| 25 | Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes,<br>Brain and Behavior, 2011, 10, 149-157.                                                                                  | 2.2 | 103       |
| 26 | Association Study of 10 Genes Encoding Neurotrophic Factors and Their Receptors in Adult and Child Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2008, 63, 935-945.                                           | 1.3 | 93        |
| 27 | Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and<br>Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.                                                                | 1.6 | 83        |
| 28 | The 5-HT2A â^'1438G/A polymorphism in anorexia nervosa: a combined analysis of 316 trios from six<br>European centres. Molecular Psychiatry, 2002, 7, 90-94.                                                                     | 7.9 | 82        |
| 29 | Brain-Derived Neurotrophic Factor and Its Intracellular Signaling Pathways in Cocaine Addiction.<br>Neuropsychobiology, 2007, 55, 2-13.                                                                                          | 1.9 | 78        |
| 30 | Analysis of two language-related genes in autism. Psychiatric Genetics, 2013, 23, 82-85.                                                                                                                                         | 1.1 | 78        |
| 31 | New suggestive genetic loci and biological pathways for attention function in adult<br>attentionâ€deficit/hyperactivity disorder. American Journal of Medical Genetics Part B:<br>Neuropsychiatric Genetics, 2015, 168, 459-470. | 1.7 | 78        |
| 32 | Altered brainâ€derived neurotrophic factor blood levels and gene variability are associated with anorexia and bulimia. Genes, Brain and Behavior, 2007, 6, 706-716.                                                              | 2.2 | 73        |
| 33 | Shared genetic background between children and adults with attention deficit/hyperactivity disorder.<br>Neuropsychopharmacology, 2020, 45, 1617-1626.                                                                            | 5.4 | 72        |
| 34 | Stroke Genetics Network (SiGN) Study. Stroke, 2013, 44, 2694-2702.                                                                                                                                                               | 2.0 | 62        |
| 35 | Case-Control Study of Six Genes Asymmetrically Expressed in the Two Cerebral Hemispheres:<br>Association of BAIAP2 with Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2009, 66,<br>926-934.                   | 1.3 | 59        |
| 36 | Case–Control Genome-Wide Association Study of Persistent Attention-Deficit Hyperactivity Disorder<br>Identifies FBXO33 as a Novel Susceptibility Gene for the Disorder. Neuropsychopharmacology, 2015, 40,<br>915-926.           | 5.4 | 59        |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Attention-deficit/hyperactivity disorder and lifetime cannabis use: genetic overlap and causality.<br>Molecular Psychiatry, 2020, 25, 2493-2503.                                                                                              | 7.9  | 59        |
| 38 | Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. International Journal of Neuropsychopharmacology, 2013, 16, 1267-1275.                                                   | 2.1  | 56        |
| 39 | Metaâ€analysis of brainâ€derived neurotrophic factor p.Val66Met in adult ADHD in four European<br>populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B,<br>512-523.                                | 1.7  | 55        |
| 40 | An international multicenter association study of the serotonin transporter gene in persistent ADHD.<br>Genes, Brain and Behavior, 2010, 9, 449-458.                                                                                          | 2.2  | 55        |
| 41 | Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new<br>mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.                                         | 21.4 | 55        |
| 42 | Association of NTRK3 and its interaction with NGF suggest an altered cross-regulation of the neurotrophin signaling pathway in eating disorders. Human Molecular Genetics, 2008, 17, 1234-1244.                                               | 2.9  | 50        |
| 43 | Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder.<br>Journal of Psychiatric Research, 2014, 49, 60-67.                                                                                        | 3.1  | 50        |
| 44 | DIRAS2 is Associated with Adult ADHD, Related Traits, and Co-Morbid Disorders.<br>Neuropsychopharmacology, 2011, 36, 2318-2327.                                                                                                               | 5.4  | 49        |
| 45 | Brain-derived neurotrophic factor serum levels in cocaine-dependent patients during early abstinence. European Neuropsychopharmacology, 2013, 23, 1078-1084.                                                                                  | 0.7  | 49        |
| 46 | Contribution of NTRK2 to the genetic susceptibility to anorexia nervosa, Harm avoidance and minimum<br>body mass index. Molecular Psychiatry, 2005, 10, 851-860.                                                                              | 7.9  | 48        |
| 47 | Fat Mass and Obesity-Associated Gene ( <b><i>FTO</i></b> ) in Eating Disorders:<br>Evidence for Association of the rs9939609 Obesity Risk Allele with Bulimia nervosa and Anorexia<br>nervosa. Obesity Facts, 2012, 5, 408-419.               | 3.4  | 46        |
| 48 | Case–control and combined family trios analysis of three polymorphisms in the ghrelin gene in<br>European patients with anorexia and bulimia nervosa. Psychiatric Genetics, 2006, 16, 51-52.                                                  | 1.1  | 40        |
| 49 | Association study of six candidate genes asymmetrically expressed in the two cerebral hemispheres suggests the involvement of BAIAP2 in autism. Journal of Psychiatric Research, 2011, 45, 280-282.                                           | 3.1  | 40        |
| 50 | Genomeâ€wide analyses of aggressiveness in attentionâ€deficit hyperactivity disorder. American Journal<br>of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 733-747.                                                          | 1.7  | 40        |
| 51 | Contribution of the serotoninergic system to anxious and depressive traits that may be partially responsible for the phenotypical variability of bulimia nervosa. Journal of Psychiatric Research, 2008, 42, 50-57.                           | 3.1  | 38        |
| 52 | Evaluation of single nucleotide polymorphisms in the miR-183–96–182 cluster in adulthood<br>attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs). European<br>Neuropsychopharmacology, 2013, 23, 1463-1473. | 0.7  | 38        |
| 53 | Association study between the DAT1, DBH and DRD2 genes and cocaine dependence in a Spanish sample.<br>Psychiatric Genetics, 2010, 20, 317-320.                                                                                                | 1.1  | 37        |
| 54 | Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC. World Journal of Biological Psychiatry, 2013, 14, 516-527.                                                            | 2.6  | 36        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Lack of replication of previous autism spectrum disorder GWAS hits in European populations. Autism Research, 2017, 10, 202-211.                                                                                                              | 3.8  | 34        |
| 56 | Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation. Neuropharmacology, 2019, 156, 107557.                                                           | 4.1  | 34        |
| 57 | A homozygous tyrosine hydroxylase gene promoter mutation in a patient with dopa-responsive<br>encephalopathy: Clinical, biochemical and genetic analysis. Molecular Genetics and Metabolism, 2007,<br>92, 274-277.                           | 1.1  | 31        |
| 58 | Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Translational Psychiatry, 2016, 6, e879-e879.                                   | 4.8  | 31        |
| 59 | Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p,<br>miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells.<br>Neuropsychopharmacology, 2019, 44, 890-897. | 5.4  | 31        |
| 60 | Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 2021, 11, 413.                                                                                                              | 4.8  | 31        |
| 61 | Association of Neurexin 3 polymorphisms with smoking behavior. Genes, Brain and Behavior, 2012, 11, 704-711.                                                                                                                                 | 2.2  | 29        |
| 62 | ADGRL3 (LPHN3) variants predict substance use disorder. Translational Psychiatry, 2019, 9, 42.                                                                                                                                               | 4.8  | 29        |
| 63 | 5′ UTR-region SNP in the NTRK3 gene is associated with panic disorder. Molecular Psychiatry, 2002, 7, 928-930.                                                                                                                               | 7.9  | 28        |
| 64 | Blood Levels of Brain-Derived Neurotrophic Factor Correlate with Several Psychopathological<br>Symptoms in Anorexia Nervosa Patients. Neuropsychobiology, 2007, 56, 185-190.                                                                 | 1.9  | 28        |
| 65 | Two-stage case-control association study of dopamine-related genes and migraine. BMC Medical Genetics, 2009, 10, 95.                                                                                                                         | 2.1  | 28        |
| 66 | Candidate system analysis in ADHD: Evaluation of nine genes involved in dopaminergic<br>neurotransmission identifies association with <i>DRD1</i> . World Journal of Biological Psychiatry,<br>2012, 13, 281-292.                            | 2.6  | 28        |
| 67 | Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD. European Neuropsychopharmacology, 2013, 23, 426-435.                                                                               | 0.7  | 28        |
| 68 | Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder. Nature Communications, 2021, 12, 576.                                                                  | 12.8 | 28        |
| 69 | Association study of 37 genes related to serotonin and dopamine neurotransmission and neurotrophic factors in cocaine dependence. Genes, Brain and Behavior, 2013, 12, 39-46.                                                                | 2.2  | 27        |
| 70 | Exome chip analyses in adult attention deficit hyperactivity disorder. Translational Psychiatry, 2016, 6, e923-e923.                                                                                                                         | 4.8  | 27        |
| 71 | Strengths and Difficulties Questionnaire: Psychometric Properties and Normative Data for Spanish 5-<br>to 17-Year-Olds. Assessment, 2021, 28, 1445-1458.                                                                                     | 3.1  | 27        |
| 72 | Changes in brain-derived neurotrophic factor (BDNF) during abstinence could be associated with relapse in cocaine-dependent patients. Psychiatry Research, 2015, 225, 309-314.                                                               | 3.3  | 26        |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | <i><scp>SLC</scp>2A3</i> singleâ€nucleotide polymorphism and duplication influence cognitive<br>processing and populationâ€specific risk for attentionâ€deficit/hyperactivity disorder. Journal of Child<br>Psychology and Psychiatry and Allied Disciplines, 2017, 58, 798-809. | 5.2 | 25        |
| 74 | Genetic overlap and causality between substance use disorder and <scp>attentionâ€deficit</scp> and<br>hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021,<br>186, 140-150.                                                     | 1.7 | 25        |
| 75 | Gut microbiota signature in treatment-naÃ <sup>-</sup> ve attention-deficit/hyperactivity disorder. Translational<br>Psychiatry, 2021, 11, 382.                                                                                                                                  | 4.8 | 25        |
| 76 | Implication of Chromosome 18 in Hypertension by Sibling Pair and Association Analyses. Hypertension, 2006, 48, 883-891.                                                                                                                                                          | 2.7 | 24        |
| 77 | Association study of the serotoninergic system in migraine in the spanish population. American<br>Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 177-184.                                                                                            | 1.7 | 24        |
| 78 | Lack of association of hormone receptor polymorphisms with migraine. European Journal of Neurology, 2009, 16, 413-415.                                                                                                                                                           | 3.3 | 24        |
| 79 | Genomeâ€wide association metaâ€analysis of age at first cannabis use. Addiction, 2018, 113, 2073-2086.                                                                                                                                                                           | 3.3 | 24        |
| 80 | Pharmacogenetics of methylphenidate response and tolerability in attention-deficit/hyperactivity disorder. Pharmacogenomics Journal, 2017, 17, 98-104.                                                                                                                           | 2.0 | 23        |
| 81 | Correlation of BDNF blood levels with interoceptive awareness and maturity fears in anorexia and bulimia nervosa patients. Journal of Neural Transmission, 2010, 117, 505-512.                                                                                                   | 2.8 | 22        |
| 82 | Tyrosine hydroxylase deficiency in three Greek patients with a common ancestral mutation. Movement<br>Disorders, 2010, 25, 1086-1090.                                                                                                                                            | 3.9 | 22        |
| 83 | Exploring <i>DRD4</i> and its interaction with <i>SLC6A3</i> as possible risk factors for adult ADHD:<br>A metaâ€analysis in four European populations. American Journal of Medical Genetics Part B:<br>Neuropsychiatric Genetics, 2011, 156, 600-612.                           | 1.7 | 22        |
| 84 | Non-mental diseases associated with ADHD across the lifespan: Fidgety Philipp and Pippi Longstocking at risk of multimorbidity?. Neuroscience and Biobehavioral Reviews, 2022, 132, 1157-1180.                                                                                   | 6.1 | 22        |
| 85 | Active and passive MDMA (â€~ecstasy') intake induces differential transcriptional changes in the mouse brain. Genes, Brain and Behavior, 2012, 11, 38-51.                                                                                                                        | 2.2 | 20        |
| 86 | On the role of <i>NOS1</i> ex1fâ€VNTR in ADHD—allelic, subgroup, and metaâ€analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 445-458.                                                                                                 | 1.7 | 20        |
| 87 | Absence of cytogenetic effects in children and adults with attention-deficit/hyperactivity disorder treated with methylphenidate. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 666, 44-49.                                                     | 1.0 | 18        |
| 88 | Common variants in the TPH1 and TPH2 regions are not associated with persistent ADHD in a combined sample of 1,636 adult cases and 1,923 controls from four European populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1008-1015. | 1.7 | 18        |
| 89 | Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity<br>disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 480-491.                                                                     | 1.7 | 18        |
| 90 | Serum Brain-Derived Neurotrophic Factor Levels and Cocaine-Induced Transient Psychotic Symptoms.<br>Neuropsychobiology, 2013, 68, 146-155.                                                                                                                                       | 1.9 | 17        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Changes in the serum levels of brain-derived neurotrophic factor in adults with attention deficit<br>hyperactivity disorder after treatment with atomoxetine. Psychopharmacology, 2014, 231, 1389-1395.      | 3.1 | 17        |
| 92  | Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence.<br>Translational Psychiatry, 2015, 5, e667-e667.                                                               | 4.8 | 17        |
| 93  | Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing. Molecular Psychiatry, 2020, 25, 2047-2057.                                                 | 7.9 | 17        |
| 94  | Candidate pathway association study in cocaine dependence: The control of neurotransmitter release.<br>World Journal of Biological Psychiatry, 2012, 13, 126-134.                                            | 2.6 | 15        |
| 95  | An association study of sequence variants in the forkhead box P2 (FOXP2) gene and adulthood<br>attention-deficit/hyperactivity disorder in two European samples. Psychiatric Genetics, 2012, 22,<br>155-160. | 1.1 | 14        |
| 96  | Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder.<br>Scientific Reports, 2018, 8, 1881.                                                                  | 3.3 | 14        |
| 97  | Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Translational Psychiatry, 2020, 10, 199.                                                                             | 4.8 | 14        |
| 98  | Continuity of Genetic Risk for Aggressive Behavior Across the Life-Course. Behavior Genetics, 2021, 51, 592-606.                                                                                             | 2.1 | 13        |
| 99  | Mendelian randomization analysis for attention deficit/hyperactivity disorder: studying a broad range of exposures and outcomes. International Journal of Epidemiology, 2023, 52, 386-402.                   | 1.9 | 13        |
| 100 | Frustrated expected reward induces differential transcriptional changes in the mouse brain.<br>Addiction Biology, 2015, 20, 22-37.                                                                           | 2.6 | 12        |
| 101 | Association of the PLCB1 gene with drug dependence. Scientific Reports, 2017, 7, 10110.                                                                                                                      | 3.3 | 12        |
| 102 | Contribution of syntaxin 1A to the genetic susceptibility to migraine: A case–control association study in the Spanish population. Neuroscience Letters, 2009, 455, 105-109.                                 | 2.1 | 11        |
| 103 | Gene-wide Association Study Reveals RNF122 Ubiquitin Ligase as a Novel Susceptibility Gene for Attention Deficit Hyperactivity Disorder. Scientific Reports, 2017, 7, 5407.                                  | 3.3 | 11        |
| 104 | Role of the neurotrophin network in eating disorders' subphenotypes: Body mass index and age at<br>onset of the disease. Journal of Psychiatric Research, 2010, 44, 834-840.                                 | 3.1 | 10        |
| 105 | An exploratory association study of the influence of noradrenergic genes and childhood trauma in<br>Borderline Personality Disorder. Psychiatry Research, 2015, 229, 589-592.                                | 3.3 | 10        |
| 106 | Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls.<br>Circulation Genomic and Precision Medicine, 2019, 12, e002338.                                            | 3.6 | 10        |
| 107 | Polygenic association between attention-deficit/hyperactivity disorder liability and cognitive impairments. Psychological Medicine, 2022, 52, 3150-3158.                                                     | 4.5 | 9         |
| 108 | The involvement of serotonin polymorphisms in autistic spectrum symptomatology. Psychiatric<br>Genetics, 2014, 24, 158-163.                                                                                  | 1,1 | 8         |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A Highly Polymorphic Copy Number Variant in the NSF Gene is Associated with Cocaine Dependence.<br>Scientific Reports, 2016, 6, 31033.                                                                                                                            | 3.3 | 8         |
| 110 | Transcriptome profiling in adult attention-deficit hyperactivity disorder. European<br>Neuropsychopharmacology, 2020, 41, 160-166.                                                                                                                                | 0.7 | 7         |
| 111 | Lack of association between the LPR and VNTR polymorphisms of the serotonin transporter gene and cocaine dependence in a Spanish sample. Psychiatry Research, 2013, 210, 1287-1289.                                                                               | 3.3 | 6         |
| 112 | A Potential Role for the STXBP5-AS1 Gene in Adult ADHD Symptoms. Behavior Genetics, 2019, 49, 270-285.                                                                                                                                                            | 2.1 | 6         |
| 113 | Genome-wide analysis of emotional lability in adult attention deficit hyperactivity disorder (ADHD).<br>European Neuropsychopharmacology, 2019, 29, 795-802.                                                                                                      | 0.7 | 6         |
| 114 | Integrating genomics and transcriptomics: Towards deciphering ADHD. European<br>Neuropsychopharmacology, 2021, 44, 1-13.                                                                                                                                          | 0.7 | 6         |
| 115 | Effectiveness and Tolerability of Duloxetine in 2 Different Ethnic Samples. Journal of Clinical Psychopharmacology, 2013, 33, 254-256.                                                                                                                            | 1.4 | 5         |
| 116 | Meta-analysis of the DRD5 VNTR in persistent ADHD. European Neuropsychopharmacology, 2016, 26, 1527-1532.                                                                                                                                                         | 0.7 | 4         |
| 117 | Evaluation of previous substance dependence genome-wide significant findings in a Spanish sample.<br>Drug and Alcohol Dependence, 2018, 187, 358-362.                                                                                                             | 3.2 | 4         |
| 118 | Is the effect of cognitive reserve in longitudinal outcomes in first-episode psychoses dependent on the use of cannabis?. Journal of Affective Disorders, 2022, 302, 83-93.                                                                                       | 4.1 | 4         |
| 119 | MDMA (Ecstasy) and Gene Expression in the Brain. , 2016, , 415-430.                                                                                                                                                                                               |     | 1         |
| 120 | Exploring allele specific methylation in drug dependence susceptibility. Journal of Psychiatric<br>Research, 2021, 136, 474-482.                                                                                                                                  | 3.1 | 1         |
| 121 | Brain structural and functional substrates of ADGRL3 (latrophilin 3) haplotype in attention-deficit/hyperactivity disorder. Scientific Reports, 2021, 11, 2373.                                                                                                   | 3.3 | 1         |
| 122 | Evidence For Association Of Genetic Variants In Pri-Mir-34B/C And Abnormal MIR-34C Expression With<br>Attention-Deficit And Hyperactivity Disorder. European Neuropsychopharmacology, 2017, 27, S433-S434.                                                        | 0.7 | 0         |
| 123 | 70GENETIC INFLUENCES CONTRIBUTING TO ATTENTION-DEFICIT/HYPERACTIVITY DISORDER ACROSS THE LIFESPAN: EVIDENCE FROM GENOME-WIDE ASSOCIATION STUDIES. European Neuropsychopharmacology, 2019, 29, S1107-S1108.                                                        | 0.7 | 0         |
| 124 | ASSOCIATION OF THE PLCB1 GENE WITH DRUG DEPENDENCE. European Neuropsychopharmacology, 2019, 29, S1018.                                                                                                                                                            | 0.7 | 0         |
| 125 | INTEGRATIVE GENOMIC ANALYSIS OF METHYLPHENIDATE RESPONSE IN ATTENTION-DEFICIT/HYPERACTIVITY DISORDER. European Neuropsychopharmacology, 2019, 29, S1002.                                                                                                          | 0.7 | 0         |
| 126 | F5EPIGENETIC SIGNATURE FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER: IDENTIFICATION OF MIR-23A-5P,<br>MIR-26B-5P, MIR-185-5P AND MIR-191-5P AS A POTENTIAL BIOMARKER IN PERIPHERAL BLOOD MONONUCLEAR<br>CELLS. European Neuropsychopharmacology, 2019, 29, S1112. | 0.7 | 0         |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | CONVERGENT FUNCTIONAL GENOMICS APPROACH TO IDENTIFY GENES INVOLVED IN ATTENTION DEFICIT/HYPERACTIVITY DISORDER. European Neuropsychopharmacology, 2019, 29, S824-S825. | 0.7 | Ο         |
| 128 | W3. GENETIC OVERLAP BETWEEN ADHD AND ASD PREDICTING ADHD SYMPTOMS IN ADULTS. European Neuropsychopharmacology, 2021, 51, e147-e148.                                    | 0.7 | 0         |