## Anand Gaurav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678631/publications.pdf Version: 2024-02-01



ANAND CALIDAN

| #  | Article                                                                                                                                                                                                                    | IF               | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 1  | Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Molecular Diversity, 2023, 27, 959-985.                                         | 2.1              | 11        |
| 2  | In Silico Investigations on the Probable Macromolecular Drug Targets Involved in the<br>Anti-Schizophrenia Activity of Terminalia bellerica. Letters in Organic Chemistry, 2022, 19, 83-92.                                | 0.2              | 1         |
| 3  | Structure-based discovery and bio-evaluation of a cyclopenta[4,5]thieno[2,3- <i>d</i> ]pyrimidin-4-one as a phosphodiesterase 10A inhibitor. RSC Advances, 2022, 12, 1576-1591.                                            | 1.7              | 6         |
| 4  | Evaluation of the Therapeutic Effect of the Traditional Herbal Medicine Atrifil and Oshagh Gum on<br>Testosterone-Induced Benign Prostatic Hyperplasia in Wistar Rats. Advances in Urology, 2022, 2022,<br>1-14.           | 0.6              | 4         |
| 5  | Identification of dual inhibitor of phosphodiesterase 1B/10A using structure-based drug design<br>approach. Journal of Molecular Liquids, 2021, 342, 117485.                                                               | 2.3              | 5         |
| 6  | Pharmacophore Modelling and Virtual Screening Studies for the Discovery of Potential Natural<br>Products Based PDE1B Inhibitor Lead Compounds. Central Nervous System Agents in Medicinal<br>Chemistry, 2021, 21, 195-204. | 0.5              | 1         |
| 7  | Docking based screening and molecular dynamics simulations to identify potential selective PDE4B inhibitor. Heliyon, 2020, 6, e04856.                                                                                      | 1.4              | 12        |
| 8  | Phosphodiesterase as a Target for Cognition Enhancement in Schizophrenia. Current Topics in<br>Medicinal Chemistry, 2020, 20, 2404-2421.                                                                                   | 1.0              | 8         |
| 9  | In-vitro anti-diabetic activity and in-silico studies of binding energies of palmatine with alpha-amylase,<br>alpha-glucosidase and DPP-IV enzymes. Pharmacia, 2020, 67, 363-371.                                          | 0.4              | 14        |
| 10 | Synthesis of 2â€(2â€oxoâ€2 <i>H</i> â€chromenâ€4â€yl)acetamides as potent acetylcholinesterase inhibitors an<br>molecular insights into binding interactions. Archiv Der Pharmazie, 2019, 352, e1800310.                   | d <sub>2.1</sub> | 15        |
| 11 | Polymerases of Coronaviruses. , 2019, , 271-300.                                                                                                                                                                           |                  | 22        |
| 12 | Protein-Protein Interactions of Phosphodiesterases. Current Topics in Medicinal Chemistry, 2019, 19, 555-564.                                                                                                              | 1.0              | 5         |
| 13 | Discovery of natural product inhibitors of phosphodiesterase 10A as novel therapeutic drug for schizophrenia using a multistep virtual screening. Computational Biology and Chemistry, 2018, 77, 52-63.                    | 1.1              | 6         |
| 14 | Structure-based design of selective phosphodiesterase 4B inhibitors based on ginger phenolic compounds. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2910-2924.                                               | 2.0              | 14        |
| 15 | Syntheses, characterization, and evaluation of novel non-carboxylic analogues of Gemfibrozil: a<br>bioisosteric approach. Journal of Chinese Pharmaceutical Sciences, 2017, 26, .                                          | 0.4              | 0         |
| 16 | Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors. Iranian<br>Journal of Pharmaceutical Research, 2017, 16, 910-923.                                                                   | 0.3              | 3         |
| 17 | NOS Inhibitors: Structure, Biological Activity and Mechanism of Action. Current Enzyme Inhibition, 2016, 12, 16-29.                                                                                                        | 0.3              | 1         |
| 18 | <i>In Silico</i> Investigation of Flavonoids as Potential Trypanosomal Nucleoside Hydrolase<br>Inhibitors. Advances in Bioinformatics, 2015, 2015, 1-10.                                                                   | 5.7              | 13        |

Anand Gaurav

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines<br>derivatives as inhibitors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic<br>potential. Medicinal Chemistry Research, 2014, 23, 5008-5030. | 1.1 | 21        |
| 20 | Identifying the Structural Features of Pyrazolo[4,3-c]Quinoline-3-ones as Inhibitors of<br>Phosphodiesterase 4: An Exploratory CoMFA and CoMSIA Study. Current Enzyme Inhibition, 2013, 9,<br>106-116.                                                          | 0.3 | 0         |
| 21 | 3D QSAR Pharmacophore, CoMFA and CoMSIA Based Design and Docking Studies on Phenyl Alkyl<br>Ketones as Inhibitors of Phosphodiesterase 4. Medicinal Chemistry, 2012, 8, 894-912.                                                                                | 0.7 | 3         |
| 22 | Quantitative structure–activity relationship and design of polysubstituted quinoline derivatives as inhibitors of phosphodiesterase 4. Medicinal Chemistry Research, 2012, 21, 3087-3103.                                                                       | 1.1 | 4         |
| 23 | 3D-QSAR studies of 4-quinolone derivatives as high-affinity ligands at the benzodiazepine site of brain<br>GABAA receptors. Medicinal Chemistry Research, 2011, 20, 192-199.                                                                                    | 1.1 | 7         |
| 24 | Exploring the Structure Activity Relationships of Imidazole Containing Tetrahydrobenzodiazepines as<br>Farnesyltransferase Inhibitors: A QSAR Study. Letters in Drug Design and Discovery, 2011, 8, 506-515.                                                    | 0.4 | 2         |
| 25 | An Overview on Synthetic Methodologies and Biological Activities of Pyrazoloquinolines.<br>Mini-Reviews in Medicinal Chemistry, 2010, 10, 1194-1210.                                                                                                            | 1.1 | 16        |
| 26 | QSAR Studies on 4-Quinolone Derivatives as High-Affinity Ligands at the Benzodiazepine Site of Brain<br>GABAA Receptors. Medicinal Chemistry, 2009, 5, 353-358.                                                                                                 | 0.7 | 2         |
| 27 | Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies.<br>Journal of Receptor, Ligand and Channel Research, 0, , 27.                                                                                                  | 0.7 | 29        |
| 28 | Computational Approaches in the Development of Phosphodiesterase Inhibitors. , 0, , .                                                                                                                                                                           |     | 0         |
| 29 | Computational Alanine Scanning Mutagenesis: Characterizing the hotspots of ILK-Ankyrin Repeat and PINCH1 Complex. , 0, , .                                                                                                                                      |     | 1         |