
Jose Marcos Ortega Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and mechanical properties of ternary mortars with brick powder, glass powder, slag, fly ash, and limestone. International Journal of Applied Ceramic Technology, 2022, 19, 2135-2147.	1.1	2
2	Mechanical Performance of Lime Mortar Coatings for Rehabilitation of Masonry Elements in Old and Historical Buildings. Sustainability, 2021, 13, 3281.	1.6	11
3	TEACHING RELATED TO REINFORCED CONCRETE STRUCTURES IN ARCHITECTURE DEGREE. ANALYSIS OF THE EXPERIENCE OF USING A PROBLEM-BASED LEARNING METHODOLOGY DURING FIVE ACADEMIC YEARS. , 2021, , .		0
4	EXPERIENCES IN THE TEACHING AND LEARNING PROCESS OF THE SUBJECT "GEOTECHNICAL STRUCTURES TECHNOLOGY―OF GEOLOGICAL ENGINEERING MASTER'S DEGREE. A SIX ACADEMIC YEARS PERIOD APPROACH. , 2021, , .		0
5	Characterization of Fresh and Durability Properties of Different Lime Mortars for Being Used as Masonry Coatings in the Restoration of Ancient Constructions. Sustainability, 2021, 13, 4909.	1.6	7
6	Microstructure and Durability Performance of Mortars with Volcanic Powder from Calbuco Volcano (Chile) after 4 Hardening Years. Materials, 2021, 14, 1751.	1.3	0
7	Effects after 1500 Hardening Days on the Microstructure and Durability-Related Parameters of Mortars Produced by the Incorporation of Waste Glass Powder as a Clinker Replacement. Sustainability, 2021, 13, 3979.	1.6	3
8	Microstructure, Durability and Mechanical Properties of Mortars Prepared Using Ternary Binders with Addition of Slag, Fly Ash and Limestone. Applied Sciences (Switzerland), 2021, 11, 6388.	1.3	9
9	Four-years influence of waste brick powder addition in the pore structure and several durability-related parameters of cement-based mortars. Construction and Building Materials, 2021, 306, 124839.	3.2	13
10	Evaluation of mortars with combined use of fine recycled aggregates and waste crumb rubber. Journal of Building Engineering, 2021, 43, 103226.	1.6	5
11	Effects of a Real Exposure Class XC4 Mediterranean Climate Environment in the Behavior of Mortars Made Using Ternary Binders with Addition of Slag, Fly Ash and Limestone. Materials, 2021, 14, 5848.	1.3	0
12	Performance of Mortars Made Using Ternary Binders with Addition of Slag, Fly Ash and Limestone Exposed to a Real Environmental Condition Compatible with Exposure Class XC3. Materials, 2021, 14, 5937.	1.3	1
13	Influence of Waste Class Powder Addition in the Microstructure and Durability of Mortars in the Very Long Term. Materials Proceedings, 2021, 6, 10.	0.2	0
14	Assessment of mechanical, thermal, mineral and physical properties of fired clay brick made by mixing kaolinitic red clay and paper pulp residues. Applied Clay Science, 2020, 198, 105847.	2.6	29
15	The Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars. Applied Sciences (Switzerland), 2020, 10, 1460.	1.3	10
16	What about Marine Renewable Energies in Spain?. Journal of Marine Science and Engineering, 2019, 7, 249.	1.2	19
17	Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design. Applied Sciences (Switzerland), 2019, 9, 272.	1.3	7
18	Use of Waste Glass as A Replacement for Raw Materials in Mortars with a Lower Environmental Impact. Energies, 2019, 12, 1974.	1.6	35

#	Article	IF	CITATIONS
19	Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars. Applied Sciences (Switzerland), 2019, 9, 984.	1.3	26
20	Pore Structure Degradation of Different Cement Mortars Exposed to Sulphuric Acid. Applied Sciences (Switzerland), 2019, 9, 5297.	1.3	5
21	Skin friction coefficient change on cement grouts for micropiles due to sulfate attack. Construction and Building Materials, 2018, 163, 80-86.	3.2	12
22	Effects of Environment in the Microstructure and Properties of Sustainable Mortars with Fly Ash and Slag after a 5-Year Exposure Period. Sustainability, 2018, 10, 663.	1.6	9
23	Mechanical Performance of Eco-Friendly Concretes with Volcanic Powder and Recycled Concrete Aggregates. Sustainability, 2018, 10, 3036.	1.6	18
24	Long-term effects of waste brick powder addition in the microstructure and service properties of mortars. Construction and Building Materials, 2018, 182, 691-702.	3.2	89
25	Short-Term Performance of Sustainable Silica Fume Mortars Exposed to Sulfate Attack. Sustainability, 2018, 10, 2517.	1.6	10
26	Influence of Waste Glass Powder Addition on the Pore Structure and Service Properties of Cement Mortars. Sustainability, 2018, 10, 842.	1.6	14
27	Influence of Waste Brick Powder in the Mechanical Properties of Recycled Aggregate Concrete. Sustainability, 2018, 10, 1037.	1.6	58
28	From Julius Caesar to Sustainable Composite Materials: A Passage through Port Caisson Technology. Sustainability, 2018, 10, 1225.	1.6	3
29	DURABILITY OF REINFORCED CONCRETE STRUCTURES FOR ARCHITECTURE AND CIVIL ENGINEERING DEGREES: A LEARNING PROPOSAL. , 2018, , .		0
30	TEACHING HOW TO CONTROL STEEL STRUCTURES ALONG THEIR CONSTRUCTION AND SERVICE LIFE FOR ENGINEERING DEGREES. INTED Proceedings, 2018, , .	0.0	0
31	Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials, 2017, 10, 890.	1.3	14
32	Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials, 2017, 10, 598.	1.3	30
33	Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment. Materials, 2017, 10, 915.	1.3	9
34	Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days. Materials, 2017, 10, 1254.	1.3	20
35	Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes. Materials, 2017, 10, 1374.	1.3	22
36	Non-Destructive Study of the Microstructural Effects of Sodium and Magnesium Sulphate Attack on Mortars Containing Silica Fume Using Impedance Spectroscopy. Applied Sciences (Switzerland), 2017, 7, 648.	1.3	31

#	Article	IF	CITATIONS
37	Impedance Spectroscopy Study of the Effect of Environmental Conditions on the Microstructure Development of Sustainable Fly Ash Cement Mortars. Materials, 2017, 10, 1130.	1.3	12
38	PERSONALIZED LEARNING IN GEOTECHNICAL STRUCTURES TECHNOLOGY. EDULEARN Proceedings, 2017, , .	0.0	0
39	REINFORCED CONCRETE STRUCTURES DESIGN FOR ARCHITECTURE DEGREES: A PROBLEM-BASED LEARNING PROPOSAL. , 2017, , .		Ο
40	A TEACHING STAFF EXCHANGE EXPERIENCE RELATED TO ENGINEERING CIVIL FIELD. , 2017, , .		0
41	MANAGEMENT OF STUDENTS EXCHANGE PROGRAMMES. AN EXPERIENCE AS INTERNATIONAL TUTOR TEACHER OF ARQUITECTURE STUDENTS. , 2017, , .		Ο
42	Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles. Materials, 2016, 9, 905.	1.3	22
43	Microstructure and durability of fly ash cement grouts for micropiles. Construction and Building Materials, 2016, 117, 47-57.	3.2	37
44	Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars. Archives of Civil and Mechanical Engineering, 2015, 15, 569-583.	1.9	48
45	Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Materiales De Construccion, 2014, 64, e003.	0.2	20
46	Moisture Distribution in Partially Saturated Concrete Studied by Impedance Spectroscopy. Journal of Nondestructive Evaluation, 2013, 32, 362-371.	1.1	35
47	Influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles. Construction and Building Materials, 2013, 38, 84-93.	3.2	25
48	Influencia de diferentes condiciones de curado en la estructura porosa y en las propiedades a edades tempranas de morteros que contienen ceniza volante y escoria de alto horno. Materiales De Construccion, 2013, 63, 219-234.	0.2	17
49	Durability related transport properties of OPC and slag cement mortars hardened under different environmental conditions. Construction and Building Materials, 2012, 27, 176-183.	3.2	39
50	Impedance spectroscopy: An efficient tool to determine the nonâ€steadyâ€state chloride diffusion coefficient in building materials. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 139-145.	0.8	30
51	The importance of urban sustainable development in a flood threatened area: the case of the northern coast of El Campello (Spain). WIT Transactions on Ecology and the Environment, 2011, , .	0.0	0
52	Influence of curing conditions on the mechanical properties and durability of cement mortars. , 2009,		9

,.