
Vinicio Granados-Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The NO–cGMP–K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin. Pharmacology Biochemistry and Behavior, 2003, 76, 187-195.	2.9	218
2	Resveratrol: A Natural Compound with Pharmacological Potential in Neurodegenerative Diseases. CNS Neuroscience and Therapeutics, 2008, 14, 234-247.	3.9	137
3	Melatonin: A hormone that modulates pain. Life Sciences, 2009, 84, 489-498.	4.3	129
4	Pharmacological evidence for the activation of K+ channels by diclofenac. European Journal of Pharmacology, 2002, 438, 85-91.	3.5	99
5	Participation of the nitric oxide–cyclic GMP–ATP-sensitive K+ channel pathway in the antinociceptive action of ketorolac. European Journal of Pharmacology, 2001, 426, 39-44.	3.5	94
6	The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. Neuropharmacology, 2002, 43, 917-923.	4.1	87
7	Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test. Pain, 2005, 117, 182-192.	4.2	87
8	Evidence for the involvement of the nitric oxide–cGMP pathway in the antinociception of morphine in the formalin test. European Journal of Pharmacology, 1997, 340, 177-180.	3.5	86
9	Peripheral and central antinociceptive action of Na+–K+–2Clâ^' cotransporter blockers on formalin-induced nociception in rats. Pain, 2005, 114, 231-238.	4.2	78
10	Evidence for the involvement of nitric oxide in the antinociceptive effect of ketorolac. European Journal of Pharmacology, 1995, 277, 281-284.	3.5	77
11	Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test. Life Sciences, 2002, 70, 1669-1676.	4.3	75
12	Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain, 2007, 132, 273-280.	4.2	74
13	Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain, 2015, 156, 305-317.	4.2	68
14	Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Frontiers in Pharmacology, 2018, 9, 1496.	3.5	67
15	Pleiotropic effects of resveratrol. Drug News and Perspectives, 2003, 16, 299.	1.5	63
16	Sildenafil produces antinociception and increases morphine antinociception in the formalin test. European Journal of Pharmacology, 2000, 400, 81-87.	3.5	62
17	Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats. European Journal of Pharmacology, 2007, 577, 203-210.	3.5	62
18	Type I Interferons Act Directly on Nociceptors to Produce Pain Sensitization: Implications for Viral Infection-Induced Pain. Journal of Neuroscience, 2020, 40, 3517-3532.	3.6	62

#	Article	IF	CITATIONS
19	Benfotiamine relieves inflammatory and neuropathic pain in rats. European Journal of Pharmacology, 2006, 530, 48-53.	3.5	61
20	Possible involvement of peripheral TRP channels in the hydrogen sulfide-induced hyperalgesia in diabetic rats. BMC Neuroscience, 2019, 20, 1.	1.9	59
21	Role of Spinal P2Y ₆ and P2Y ₁₁ Receptors in Neuropathic Pain in Rats: Possible Involvement of Glial Cells. Molecular Pain, 2014, 10, 1744-8069-10-29.	2.1	57
22	Possible activation of the NO–cyclic GMP–protein kinase G–K+ channels pathway by gabapentin on the formalin test. Pharmacology Biochemistry and Behavior, 2006, 83, 420-427.	2.9	51
23	Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats. Brain Research, 2015, 1622, 377-385.	2.2	51
24	Possible participation of the nitric oxide-cyclic GMP-protein kinase G-K+ channels pathway in the peripheral antinociception of melatonin. European Journal of Pharmacology, 2008, 596, 70-76.	3.5	50
25	The role of peripheral 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F serotonergic receptors in the reduction of nociception in rats. Neuroscience, 2010, 165, 561-568.	2.3	50
26	The nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway participates in the antiallodynic effect of spinal gabapentin. European Journal of Pharmacology, 2006, 531, 87-95.	3.5	48
27	Role of peripheral 5-HT4, 5-HT6, and 5-HT7 receptors in development and maintenance of secondary mechanical allodynia and hyperalgesia. Pain, 2011, 152, 687-697.	4.2	46
28	The α5 subunit containing GABAA receptors contribute to chronic pain. Pain, 2016, 157, 613-626.	4.2	46
29	Formalin injection produces long-lasting hypersensitivity with characteristics of neuropathic pain. European Journal of Pharmacology, 2017, 797, 83-93.	3.5	45
30	Activation of the integrated stress response in nociceptors drives methylglyoxal-induced pain. Pain, 2019, 160, 160-171.	4.2	45
31	Cdk5-Dependent Phosphorylation of Ca _V 3.2 T-Type Channels: Possible Role in Nerve Ligation-Induced Neuropathic Allodynia and the Compound Action Potential in Primary Afferent C Fibers. Journal of Neuroscience, 2020, 40, 283-296.	3.6	45
32	Evidence for a peripheral mechanism of action for the potentiation of the antinociceptive effect of morphine by dipyrone. Journal of Pharmacological and Toxicological Methods, 1999, 42, 79-85.	0.7	44
33	Role of peripheral and spinal 5-HT6 receptors according to the rat formalin test. Neuroscience, 2009, 162, 444-452.	2.3	44
34	Synergistic effects between codeine and diclofenac after local, spinal and systemic administration. Pharmacology Biochemistry and Behavior, 2003, 76, 463-471.	2.9	43
35	Role of opioid receptors in the reduction of formalin-induced secondary allodynia and hyperalgesia in rats. European Journal of Pharmacology, 2009, 619, 25-32.	3.5	42
36	Peripheral and spinal 5-HT receptors participate in the pronociceptive and antinociceptive effects of fluoxetine in rats. Neuroscience, 2013, 252, 396-409.	2.3	41

#	Article	IF	CITATIONS
37	Evidence for the participation of the nitric oxide–cyclic GMP pathway in the antinociceptive action of meloxicam in the formalin test. European Journal of Pharmacology, 2000, 395, 9-13.	3.5	39
38	Pharmacological evidence for the participation of NO–cyclic GMP–PKG–K+ channel pathway in the antiallodynic action of resveratrol. Pharmacology Biochemistry and Behavior, 2006, 84, 535-542.	2.9	39
39	Acid increases inflammatory pain in rats: Effect of local peripheral ASICs inhibitors. European Journal of Pharmacology, 2009, 603, 56-61.	3.5	39
40	Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacology Biochemistry and Behavior, 2015, 128, 23-32.	2.9	39
41	Effect of K+ channel modulators on the antiallodynic effect of gabapentin. European Journal of Pharmacology, 2004, 484, 201-208.	3.5	38
42	Formalin-induced long-term secondary allodynia and hyperalgesia are maintained by descending facilitation. Pharmacology Biochemistry and Behavior, 2011, 98, 417-424.	2.9	38
43	Thiamine and Cyanocobalamin Relieve Neuropathic Pain in Rats: Synergy with Dexamethasone. Pharmacology, 2006, 77, 53-62.	2.2	37
44	Secondary mechanical allodynia and hyperalgesia depend on descending facilitation mediated by spinal 5-HT4, 5-HT6 and 5-HT7 receptors. Neuroscience, 2012, 222, 379-391.	2.3	37
45	Role of Anoctamin-1 and Bestrophin-1 in Spinal Nerve Ligation-Induced Neuropathic Pain in Rats. Molecular Pain, 2015, 11, s12990-015-0042.	2.1	37
46	Blockade of 5-HT7 receptors reduces tactile allodynia in the rat. Pharmacology Biochemistry and Behavior, 2011, 99, 591-597.	2.9	36
47	Role of peripheral and spinal 5-HT3 receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia. Pharmacology Biochemistry and Behavior, 2012, 101, 246-257.	2.9	36
48	Spinal 5-HT5A receptors mediate 5-HT-induced antinociception in several pain models in rats. Pharmacology Biochemistry and Behavior, 2014, 120, 25-32.	2.9	36
49	Peripheral and spinal mechanisms of antinociceptive action of lumiracoxib. European Journal of Pharmacology, 2005, 513, 81-91.	3.5	35
50	Evidence for the participation of the nitric oxide–cyclic GMP pathway in the antinociceptive effect of nimesulide. Journal of Pharmacological and Toxicological Methods, 1999, 42, 87-92.	0.7	33
51	Synergic Antinociceptive Interaction between Tramadol and Gabapentin after Local, Spinal and Systemic Administration. Pharmacology, 2005, 74, 200-208.	2.2	32
52	Subcutaneous, intrathecal and periaqueductal grey administration of asimadoline and ICI-204448 reduces tactile allodynia in the rat. European Journal of Pharmacology, 2007, 573, 75-83.	3.5	32
53	Additive interaction between peripheral and central mechanisms involved in the antinociceptive effect of diclofenac in the formalin test in rats. Pharmacology Biochemistry and Behavior, 2008, 91, 32-37.	2.9	32
54	Antinociceptive properties of selective MT2 melatonin receptor partial agonists. European Journal of Pharmacology, 2015, 764, 424-432.	3.5	32

#	Article	IF	CITATIONS
55	Possible involvement of potassium channels in peripheral antinociception induced by metamizol: lack of participation of ATP-sensitive K+ channels. Pharmacology Biochemistry and Behavior, 2003, 74, 465-470.	2.9	31
56	Effect of diabetes on the mechanisms of intrathecal antinociception of sildenafil in rats. European Journal of Pharmacology, 2005, 527, 60-70.	3.5	31
57	Role of peripheral and spinal 5-HT2B receptors in formalin-induced nociception. Pharmacology Biochemistry and Behavior, 2012, 102, 30-35.	2.9	30
58	Analysis of the mechanism underlying the peripheral antinociceptive action of sildenafil in the formalin test. European Journal of Pharmacology, 2005, 512, 121-127.	3.5	29
59	Sex differences and estradiol involvement in hyperalgesia and allodynia in an experimental model of fibromyalgia. Hormones and Behavior, 2018, 97, 39-46.	2.1	28
60	Peripheral Antinociceptive Action of Morphine and the Synergistic Interaction with Lamotrigine. Anesthesiology, 2002, 96, 921-925.	2.5	27
61	Pharmacological evidence for the activation of Ca2+-activated K+ channels by meloxicam in the formalin test. Pharmacology Biochemistry and Behavior, 2005, 81, 725-731.	2.9	26
62	The <scp>l</scp> â€kynurenine–probenecid combination reduces neuropathic pain in rats. European Journal of Pain, 2013, 17, 1365-1373.	2.8	26
63	Evaluation of the neonatal streptozotocin model of diabetes in rats: Evidence for a model of neuropathic pain. Pharmacological Reports, 2018, 70, 294-303.	3.3	26
64	Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Frontiers in Pharmacology, 2020, 11, 558474.	3.5	26
65	Riboflavin reduces hyperalgesia and inflammation but not tactile allodynia in the rat. European Journal of Pharmacology, 2004, 492, 35-40.	3.5	25
66	Relationship Between Paracetamol Plasma Levels and its Analgesic Effect in the Rat. Journal of Pharmacy and Pharmacology, 2011, 44, 741-744.	2.4	24
67	Sexâ€dependent pronociceptive role of spinal α ₅ â€GABA _A receptor and its epigenetic regulation in neuropathic rodents. Journal of Neurochemistry, 2021, 156, 897-916.	3.9	24
68	Spinal nerve ligation reduces nitric oxide synthase activity and expression: Effect of resveratrol. Pharmacology Biochemistry and Behavior, 2008, 90, 742-747.	2.9	23
69	Role of ATP-sensitive K+ channels in the antinociception induced by non-steroidal anti-inflammatory drugs in streptozotocin-diabetic and non-diabetic rats. Pharmacology Biochemistry and Behavior, 2012, 102, 163-169.	2.9	23
70	Blockade of spinal α5-GABAA receptors differentially reduces reserpine-induced fibromyalgia-type pain in female rats. European Journal of Pharmacology, 2019, 858, 172443.	3.5	23
71	Peripheral participation of cholecystokinin in the morphine-induced peripheral antinociceptive effect in non-diabetic and diabetic rats. Neuropharmacology, 2007, 52, 788-795.	4.1	22
72	Involvement of cholecystokinin in peripheral nociceptive sensitization during diabetes in rats as revealed by the formalin response. Pain, 2006, 122, 118-125.	4.2	21

VINICIO GRANADOS-SOTO

#	Article	IF	CITATIONS
73	Pre-emptive analgesia with the combination of tramadol plus meloxicam for third molar surgery: a pilot study. British Journal of Oral and Maxillofacial Surgery, 2012, 50, 673-677.	0.8	21
74	B-vitamin Mixture Improves the Analgesic Effect of Diclofenac in Patients with Osteoarthritis: A Double Blind Study. Drug Research, 2013, 63, 289-292.	1.7	21
75	Evidence for the participation of Ca2+-activated chloride channels in formalin-induced acute and chronic nociception. Brain Research, 2014, 1579, 35-44.	2.2	21
76	Evidence for the participation of peripheral $\hat{l}\pm 5$ subunit-containing GABAA receptors in GABAA agonists-induced nociception in rats. European Journal of Pharmacology, 2014, 734, 91-97.	3.5	21
77	Antineuropathic effect of 7-hydroxy-3,4-dihydrocadalin in streptozotocin-induced diabetic rodents. BMC Complementary and Alternative Medicine, 2014, 14, 129.	3.7	20
78	Role of spinal 5-HT 2 receptors subtypes in formalin-induced long-lasting hypersensitivity. Pharmacological Reports, 2016, 68, 434-442.	3.3	20
79	Spinal 5-HT 4 and 5-HT 6 receptors contribute to the maintenance of neuropathic pain in rats. Pharmacological Reports, 2017, 69, 916-923.	3.3	20
80	Effect of coadministration of caffeine and either adenosine agonists or cyclic nucleotides on ketorolac analgesia. European Journal of Pharmacology, 1999, 377, 175-182.	3.5	19
81	Predominant role of spinal P2Y 1 receptors in the development of neuropathic pain in rats. Brain Research, 2016, 1636, 43-51.	2.2	19
82	Evidence for the participation of peripheral 5-HT2A, 5-HT2B, and 5-HT2C receptors in formalin-induced secondary mechanical allodynia and hyperalgesia. Neuroscience, 2013, 232, 169-181.	2.3	18
83	Pyritinol reduces nociception and oxidative stress in diabetic rats. European Journal of Pharmacology, 2008, 590, 170-176.	3.5	17
84	Peripheral and spinal TRPA1 channels contribute to formalin-induced long-lasting mechanical hypersensitivity. Journal of Pain Research, 2018, Volume 11, 51-60.	2.0	17
85	Identification of the Na+/H+ exchanger 1 in dorsal root ganglion and spinal cord: Its possible role in inflammatory nociception. Neuroscience, 2009, 160, 156-164.	2.3	16
86	Antinociceptive effect of (â^')-epicatechin in inflammatory and neuropathic pain in rats. Behavioural Pharmacology, 2018, 29, 270-279.	1.7	16
87	Fructose-Induced Insulin Resistance as a Model of Neuropathic Pain in Rats. Neuroscience, 2019, 404, 233-245.	2.3	16
88	α5GABAA receptors play a pronociceptive role and avoid the rate-dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability. Pain, 2019, 160, 1448-1458.	4.2	16
89	Vitamin A increases nerve growth factor and retinoic acid receptor beta and improves diabetic neuropathy in rats. Translational Research, 2014, 164, 196-201.	5.0	15
90	5â€HT _{2B} Receptor Antagonists Reduce Nerve Injuryâ€Induced Tactile Allodynia and Expression of 5â€HT _{2B} Receptors. Drug Development Research, 2015, 76, 31-39.	2.9	15

#	Article	IF	CITATIONS
91	Antinociceptive effect of 7-hydroxy-3,4-dihydrocadalin isolated from Heterotheca inuloides: Role of peripheral 5-HT1 serotonergic receptors. European Journal of Pharmacology, 2010, 649, 154-160.	3.5	14
92	Isobolographic Analyses of the Gabapentin-Metamizol Combination after Local Peripheral, Intrathecal and Oral Administration in the Rat. Pharmacology, 2007, 79, 214-222.	2.2	13
93	Anti-allodynic effect of 2-(aminomethyl)adamantane-1-carboxylic acid in a rat model of neuropathic pain: A mechanism dependent on CaV2.2 channel inhibition. Bioorganic and Medicinal Chemistry, 2014, 22, 1797-1803.	3.0	13
94	Fosinopril Prevents the Development of Tactile Allodynia in a Streptozotocinâ€Induced Diabetic Rat Model. Drug Development Research, 2015, 76, 442-449.	2.9	13
95	Role of the spinal Na+/H+ exchanger in formalin-induced nociception. Neuroscience Letters, 2011, 501, 4-9.	2.1	12
96	Blockade of peripheral and spinal Na+/H+ exchanger increases formalin-induced long-lasting mechanical allodynia and hyperalgesia in rats. Brain Research, 2012, 1475, 19-30.	2.2	12
97	Role of 5-HT1B/1D receptors in the reduction of formalin-induced nociception and secondary allodynia/hyperalgesia produced by antimigraine drugs in rats. Life Sciences, 2013, 92, 1046-1054.	4.3	12
98	Role of NHE1 in Nociception. Pain Research and Treatment, 2013, 2013, 1-8.	1.7	12
99	Role of TRPV1 and ASIC3 in formalin-induced secondary allodynia and hyperalgesia. Pharmacological Reports, 2014, 66, 964-971.	3.3	12
100	Role of 5-HT5A and 5-HT1B/1D receptors in the antinociception produced by ergotamine and valerenic acid in the rat formalin test. European Journal of Pharmacology, 2016, 781, 109-116.	3.5	12
101	ATF2, but not ATF3, participates in the maintenance of nerve injury-induced tactile allodynia and thermal hyperalgesia. Molecular Pain, 2018, 14, 174480691878742.	2.1	12
102	Celecoxib reduces hyperalgesia and tactile allodynia in diabetic rats. Pharmacological Reports, 2015, 67, 545-552.	3.3	11
103	Ultraâ€Low Doses of Naltrexone Enhance the Antiallodynic Effect of Pregabalin or Gabapentin in Neuropathic Rats. Drug Development Research, 2017, 78, 371-380.	2.9	10
104	Oral administration of B vitamins increases the antiallodynic effect of gabapentin in the rat. Proceedings of the Western Pharmacology Society, 2004, 47, 76-9.	0.1	10
105	N-(4-Methoxy-2-nitrophenyl)hexadecanamide, a palmitoylethanolamide analogue, reduces formalin-induced nociception. Life Sciences, 2012, 91, 1288-1294.	4.3	9
106	Analysis of the mechanisms underlying the antinociceptive effect of epicatechin in diabetic rats. Life Sciences, 2013, 93, 637-645.	4.3	9
107	Effect of diclofenac on the antiallodynic activity of vitamin B12 in a neuropathic pain model in the rat. Proceedings of the Western Pharmacology Society, 2004, 47, 92-4.	0.1	9
108	The Antinociceptive Effect of a Tapentadolâ€Ketorolac Combination in a Mouse Model of Trigeminal Pain is Mediated by Opioid Receptors and ATP‧ensitive K ⁺ Channels. Drug Development Research, 2017, 78, 63-70.	2.9	8

VINICIO GRANADOS-SOTO

#	Article	IF	CITATIONS
109	The role of spinal cord extrasynaptic α ₅ GABA _A receptors in chronic pain. Physiological Reports, 2021, 9, e14984.	1.7	8
110	Synergistic antiallodynic interaction between gabapentin or carbamazepine and either benfotiamine or cyanocobalamin in neuropathic rats. Methods and Findings in Experimental and Clinical Pharmacology, 2008, 30, 431.	0.8	8
111	Mechanisms of analgesic action of B vitamins in formalin-induced inflammatory pain. Proceedings of the Western Pharmacology Society, 2002, 45, 144-6.	0.1	8
112	Synergistic antinociceptive interaction between acetaminophen or metamizol and B vitamins in the formalin test. Drug Development Research, 2005, 66, 286-294.	2.9	7
113	Synergism between tramadol and meloxicam in the formalin test involves both opioidergic and serotonergic pathways. Drug Development Research, 2012, 73, 43-50.	2.9	7
114	Inhibition of peripheral anion exchanger 3 decreases formalin-induced pain. European Journal of Pharmacology, 2014, 738, 91-100.	3.5	7
115	Tonically Active $\hat{I}\pm 5$ GABAA Receptors Reduce Motoneuron Excitability and Decrease the Monosynaptic Reflex. Frontiers in Cellular Neuroscience, 2017, 11, 283.	3.7	7
116	Sildenafil and glyceryl trinitrate reduce tactile allodynia in streptozotocin-injected rats. European Journal of Pharmacology, 2010, 631, 17-23.	3.5	6
117	Interaction of NHE1 and TRPA1 Activity in DRG Neurons Isolated from Adult Rats and its Role in Inflammatory Nociception. Neuroscience, 2021, 465, 154-165.	2.3	5
118	Synergistic interaction between amitriptyline and paracetamol in persistent and neuropathic pain models: An isobolografic analysis. Neurochemistry International, 2021, 150, 105160.	3.8	5
119	Antinociceptive synergy between dexamethasone and the B vitamin complex in a neuropathic pain model in the rat. Proceedings of the Western Pharmacology Society, 2004, 47, 88-91.	0.1	5
120	Proglumide enhances the antinociceptive effect of cyclooxygenase inhibitors in diabetic rats in the formalin test. European Journal of Pharmacology, 2011, 664, 8-13.	3.5	4
121	Assessment of the antinociceptive and ulcerogenic activity of the tapentadol–diclofenac combination in rodents. Drug Development Research, 2018, 79, 38-44.	2.9	4
122	Antinociception and less gastric injury with the dexketoprofenâ€ŧapentadol combination in mice. Fundamental and Clinical Pharmacology, 2021, 35, 371-378.	1.9	4
123	Pharmacological Analysis of the Anti-inflammatory and Antiallodynic Effects of Zinagrandinolide E from <i>Zinnia grandiflora</i> in Mice. Journal of Natural Products, 2021, 84, 713-723.	3.0	4
124	Sex-dependent antiallodynic effect of α2 adrenergic receptor agonist tizanidine in rats with experimental neuropathic pain. European Journal of Pharmacology, 2022, 920, 174855.	3.5	4
125	Peripheral participation of the phosphodiesterase 3 on formalin-evoked nociception. European Journal of Pharmacology, 2005, 519, 75-79.	3.5	3
126	Synergistic antiallodynic interaction of the metamizolâ€gabapentin combination. Drug Development Research, 2009, 70, 386-394.	2.9	3

#	Article	IF	CITATIONS
127	Ketorolac Tromethamine Improves the Analgesic Effect of Hyoscine Butylbromide in Patients with Intense Cramping Pain from Gastrointestinal or Genitourinary Origin. Arzneimittelforschung, 2012, 62, 603-608.	0.4	3
128	Toluene exposure enhances acute and chronic formalin-induced nociception in rats: Participation of 5-HT 3 receptors. NeuroToxicology, 2017, 63, 97-105.	3.0	3
129	Anion exchanger 3 in dorsal root ganglion contributes to nerve injury-induced chronic mechanical allodynia and thermal hyperalgesia. Journal of Pharmacy and Pharmacology, 2018, 70, 374-382.	2.4	2
130	Comparison of antinociceptive efficacy and gastroprotection between celecoxib and diclofenac plus misoprostol in rats. Proceedings of the Western Pharmacology Society, 2007, 50, 69-71.	0.1	2
131	Dexamethasone Increases the Anesthetic Success in Patients with Symptomatic Irreversible Pulpitis: A Meta-Analysis. Pharmaceuticals, 2022, 15, 878.	3.8	2
132	Synergistic interaction of diclofenac, benfotiamine, and resveratrol in experimental acute pain. Drug Development Research, 2011, 72, 397-404.	2.9	1
133	L-655,708 â~†. , 2018, , .		0
134	Fecal microbiome transplantation reverses obesity-induced neuropathic pain. Mexican Journal of Medical Research ICSA, 2021, 9, 1-2.	0.2	0
135	Opioids and Opiates: Pharmacology, Abuse, and Addiction. , 2015, , 1-33.		0
136	Extrasynaptic $\hat{I}\pm 5$ GABAA receptors and their role in nociception and pathological pain. , 2022, , 129-137.		0