
Jie Jie Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678446/publications.pdf Version: 2024-02-01

LIE LIE TONG

#	Article	IF	CITATIONS
1	Full-field experimental and numerical characterisation of a growing fatigue crack in a stainless steel. International Journal of Fatigue, 2020, 133, 105449.	5.7	11
2	A 3D fullâ€field study of cracks in a nuclear graphite under mode I and mode II cyclic dwell loading conditions. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1646-1657.	3.4	4
3	Towards a fundamental understanding of the effects of surface conditions on fatigue resistance for safety-critical AM applications. International Journal of Fatigue, 2020, 136, 105585.	5.7	5
4	Fatigue crack closure: A myth or a misconception?. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2747-2763.	3.4	29
5	Characterisation of fatigue crack tip field in the presence of significant plasticity. Theoretical and Applied Fracture Mechanics, 2019, 103, 102298.	4.7	12
6	Do additive manufactured parts deserve better?. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2146-2154.	3.4	19
7	Fullâ€field characterization of a fatigue crack: Crack closure revisited. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 2130-2139.	3.4	14
8	Fullâ€field characterisation of crack tip deformation and fatigue crack growth using digital image correlation—a review. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1855-1869.	3.4	47
9	A parametric study of DIC measurement uncertainties on cracked metals. Strain, 2018, 54, e12291.	2.4	9
10	In situ mapping of normal strains in the field of a growing fatigue crack in a steel weld using digital image correlation and energy dispersive synchrotron X-ray diffraction. International Journal of Fatigue, 2018, 115, 11-19.	5.7	6
11	<i>In situ</i> nearâ€tip normal strain evolution of a growing fatigue crack. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 950-955.	3.4	18
12	Impact of P2RX7 ablation on the morphological, mechanical and tissue properties of bones in a murine model of duchenne muscular dystrophy. Journal of Biomechanics, 2016, 49, 3444-3451.	2.1	7
13	Stress shielding in periprosthetic bone following a total knee replacement: Effects of implant material, design and alignment. Medical Engineering and Physics, 2016, 38, 1481-1488.	1.7	86
14	Spatial resolution and measurement uncertainty of strains in bone and bone–cement interface using digital volume correlation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 269-279.	3.1	21
15	Stress shielding in bone of a bone-cement interface. Medical Engineering and Physics, 2016, 38, 423-426.	1.7	28
16	Near-tip strain ratchetting and crack growth at elevated temperature. International Journal of Fatigue, 2016, 82, 514-520.	5.7	9
17	Hip joint degeneration due to cam impingement: a finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 41-48.	1.6	19
18	P2RX7 Purinoceptor: A Therapeutic Target for Ameliorating the Symptoms of Duchenne Muscular Dystrophy. PLoS Medicine, 2015, 12, e1001888.	8.4	51

Jie Jie Tong

#	Article	IF	CITATIONS
19	Residual stresses due to foreign object damage in laser-shock peened aerofoils: Simulation and measurement. Mechanics of Materials, 2015, 82, 78-90.	3.2	36
20	In Situ Experimental Study of Near-Tip Strain Evolution of Fatigue Cracks. Experimental Mechanics, 2015, 55, 1175-1185.	2.0	29
21	Near-tip strain evolution under cyclic loading: In situ experimental observation and numerical modelling. International Journal of Fatigue, 2015, 71, 45-52.	5.7	44
22	Effects of temperature and hold time on dynamic strain aging in a nickel based superalloy. Materials at High Temperatures, 2014, 31, 226-232.	1.0	11
23	A study of fatigue crack tip characteristics using discrete dislocation dynamics. International Journal of Plasticity, 2014, 54, 229-246.	8.8	47
24	Fatigue crack growth in laser-shock-peened Ti–6Al–4V aerofoil specimens due to foreign object damage. International Journal of Fatigue, 2014, 59, 23-33.	5.7	64
25	Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression. Journal of Biomechanics, 2014, 47, 3466-3474.	2.1	31
26	Micro-mechanical damage of trabecular bone–cement interface under selected loading conditions: a finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 230-238.	1.6	9
27	Characterisation of a metallic foam–cement composite under selected loading conditions. Journal of Materials Science: Materials in Medicine, 2013, 24, 2509-2518.	3.6	7
28	Ratchetting strain as a driving force for fatigue crack growth. International Journal of Fatigue, 2013, 46, 49-57.	5.7	51
29	Damage evolution in acetabular reconstructs under physiological testing in a saline environment. Journal of Biomechanics, 2012, 45, 405-408.	2.1	2
30	3D real-time micromechanical compressive behaviour of bone–cement interface: Experimental and finite element studies. Journal of Biomechanics, 2012, 45, 356-363.	2.1	31
31	Compressive Fatigue Behavior of Bovine Cancellous Bone and Bone Analogous Materials under Multi‣tep Loading Conditions. Advanced Engineering Materials, 2012, 14, B199.	3.5	6
32	Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1452-1461.	3.1	40
33	Bone–cement interfacial behaviour under mixed mode loading conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 392-398.	3.1	30
34	Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep–fatigue loading conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 518, 27-34.	5.6	25
35	Damage evolution in acetabular replacements under long-term physiological loading conditions. Journal of Biomechanics, 2009, 42, 1061-1068.	2.1	7
36	A viscoplastic study of crack-tip deformation and crack growth in a nickel-based superalloy at elevated temperature. Journal of the Mechanics and Physics of Solids, 2008, 56, 3363-3378.	4.8	53

Jie Jie Tong

#	Article	IF	CITATIONS
37	Fatigue in cemented acetabular replacements. International Journal of Fatigue, 2008, 30, 1366-1375.	5.7	26
38	Influence of foreign object damage on fatigue crack growth of gas turbine aerofoils under complex loading conditions. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 386-397.	3.4	23
39	Determination of interfacial fracture toughness of bone–cement interface using sandwich Brazilian disks. Engineering Fracture Mechanics, 2007, 74, 1904-1916.	4.3	41
40	A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations. Part II: Simulation of cyclic stress relaxation. Mechanics of Materials, 2007, 39, 73-80.	3.2	31
41	A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations. Part I: Evaluation and determination of material parameters. Mechanics of Materials, 2007, 39, 64-72.	3.2	57
42	Failure of an uncemented acetabular prosthesis – a case study. Engineering Failure Analysis, 2006, 13, 163-169.	4.0	11
43	In vitro fatigue behaviour of a cemented acetabular reconstruction. Journal of Biomechanics, 2006, 39, 2882-2886.	2.1	14
44	Crack growth in a new nickel-based superalloy at elevated temperature. Journal of Materials Science, 2005, 40, 1217-1228.	3.7	22
45	Crack growth in a new nickel-based superalloy at elevated temperature. Journal of Materials Science, 2005, 40, 1229-1235.	3.7	1
46	Crack growth in a new nickel-based superalloy at elevated temperature. Journal of Materials Science, 2005, 40, 1237-1243.	3.7	17
47	The evolution of the stress–strain fields near a fatigue crack tip and plasticityâ€induced crack closure revisited. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 19-29.	3.4	69
48	Characteristics of fatigue crack growth in GFRP laminates. International Journal of Fatigue, 2002, 24, 291-297.	5.7	47
49	T-stress and its implications for crack growth. Engineering Fracture Mechanics, 2002, 69, 1325-1337.	4.3	74
50	Mixed-mode crack growth from an unusual source. Fatigue and Fracture of Engineering Materials and Structures, 2001, 24, 771-775.	3.4	4
51	Stress intensity factor K and the elastic T-stress for corner cracks. International Journal of Fracture, 2001, 109, 209-225.	2.2	39