Wenwen Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678398/publications.pdf

Version: 2024-02-01

		516710	454955
34	913	16	30
papers	citations	h-index	g-index
2.5	0.5	0.5	10.40
35	35	35	1240
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Multi-parametric MRI-based radiomics for the diagnosis of malignant soft-tissue tumor. Magnetic Resonance Imaging, 2022, 91, 91-99.	1.8	5
2	Gradient-Based Rapid Digital Immunoassay for High-Sensitivity Cardiac Troponin T (hs-cTnT) Detection in 1 \hat{l} /4L Plasma. ACS Sensors, 2021, 6, 399-407.	7.8	12
3	Probing Single-Molecule Binding Event by the Dynamic Counting and Mapping of Individual Nanoparticles. ACS Sensors, 2021, 6, 523-529.	7.8	13
4	Charge-Sensitive Optical Detection of Small Molecule Binding Kinetics in Normal Ionic Strength Buffer. ACS Sensors, 2021, 6, 364-370.	7.8	2
5	A self-powered rapid loading microfluidic chip for vector-borne viruses detection using RT-LAMP. Sensors and Actuators B: Chemical, 2021, 333, 129521.	7.8	12
6	A Three-Dimensional Micromixer Using Oblique Embedded Ridges. Micromachines, 2021, 12, 806.	2.9	1
7	Sorption of organochlorine pesticides on polyethylene microplastics in soil suspension. Ecotoxicology and Environmental Safety, 2021, 223, 112591.	6.0	33
8	Three-Dimensional Tracking of Tethered Particles for Probing Nanometer-Scale Single-Molecule Dynamics Using a Plasmonic Microscope. ACS Sensors, 2021, 6, 4234-4243.	7.8	7
9	Simultaneous Quantification of Protein Binding Kinetics in Whole Cells with Surface Plasmon Resonance Imaging and Edge Deformation Tracking. Membranes, 2020, 10, 247.	3.0	8
10	Direct Antimicrobial Susceptibility Testing on Clinical Urine Samples by Optical Tracking of Single Cell Division Events. Small, 2020, 16, e2004148.	10.0	14
11	One-Step Digital Immunoassay for Rapid and Sensitive Detection of Cardiac Troponin I. ACS Sensors, 2020, 5, 1126-1131.	7.8	35
12	Rapid Antibiotic Susceptibility Testing Based on Bacterial Motion Patterns With Long Short-Term Memory Neural Networks. IEEE Sensors Journal, 2020, 20, 4940-4950.	4.7	14
13	Time-Resolved Digital Immunoassay for Rapid and Sensitive Quantitation of Procalcitonin with Plasmonic Imaging. ACS Nano, 2019, 13, 8609-8617.	14.6	61
14	Rapid Antimicrobial Susceptibility Testing of Patient Urine Samples Using Large Volume Free-Solution Light Scattering Microscopy. Analytical Chemistry, 2019, 91, 10164-10171.	6.5	29
15	A method for particulate matter 2.5 (PM2.5) biotoxicity assay using luminescent bacterium. Ecotoxicology and Environmental Safety, 2019, 170, 796-803.	6.0	9
16	Phenotypic Antimicrobial Susceptibility Testing with Deep Learning Video Microscopy. Analytical Chemistry, 2018, 90, 6314-6322.	6.5	61
17	Label-Free Quantification of Small-Molecule Binding to Membrane Proteins on Single Cells by Tracking Nanometer-Scale Cellular Membrane Deformation. ACS Nano, 2018, 12, 2056-2064.	14.6	16
18	A novel microfluidic module for rapid detection of airborne and waterborne pathogens. Sensors and Actuators B: Chemical, 2018, 258, 1138-1145.	7.8	28

#	Article	IF	Citations
19	A novel method for multiple cytokines/chemokines DropArray assay in 5 14 L of bronchoalveolar lavage fluid (BALF) in mice. Sensors and Actuators B: Chemical, 2017, 242, 195-201.	7.8	4
20	Current and emerging techniques for antibiotic susceptibility tests. Theranostics, 2017, 7, 1795-1805.	10.0	143
21	Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation. Journal of Biomedical Optics, 2017, 22, 1.	2.6	3
22	Rapid Capture and Analysis of Airborne Staphylococcus aureus in the Hospital Using a Microfluidic Chip. Micromachines, 2016, 7, 169.	2.9	23
23	Rapid Diagnosis by Microfluidic Techniques. , 2016, , .		2
24	High-Throughput Microfluidic Device for LAMP Analysis of Airborne Bacteria. ACS Sensors, 2016, 1, 958-962.	7.8	43
25	First airborne pathogen direct analysis system. Analyst, The, 2016, 141, 1637-1640.	3 . 5	26
26	Rapid microfluidic immunoassay for surveillance and diagnosis of <i>Cryptosporidium</i> infection in human immunodeficiency virus-infected patients. Biomicrofluidics, 2015, 9, 024114.	2.4	2
27	Bioanalysis within Microfluidics: A Review. ACS Symposium Series, 2015, , 245-268.	0.5	4
28	A novel test strip for organophosphorus detection. Sensors and Actuators B: Chemical, 2015, 210, 803-810.	7.8	21
29	Characteristics of a Microcystin-LR Biodegrading Bacterial Isolate: Ochrobactrum sp. FDT5. Bulletin of Environmental Contamination and Toxicology, 2014, 92, 119-122.	2.7	16
30	A continuous-flow high-throughput microfluidic device for airborne bacteria PCR detection. Lab on A Chip, 2014, 14, 671-676.	6.0	51
31	Microfluidic Platform for Direct Capture and Analysis of Airborne <i>Mycobacterium tuberculosis</i> . Analytical Chemistry, 2014, 86, 5815-5821.	6.5	53
32	Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta, 2014, 122, 246-250.	5 . 5	64
33	An integrated microfluidic device for rapid serodiagnosis of amebiasis. Biomicrofluidics, 2013, 7, 11101.	2.4	16
34	Microfluidic Device for Efficient Airborne Bacteria Capture and Enrichment. Analytical Chemistry, 2013, 85, 5255-5262.	6.5	81