List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7677814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of α-Synuclein and Disease-Associated Factors in Drosophila Models of Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 1519.	1.8	8
2	Hemiplegic migraine type 2 with new mutation of the ATP1A2 gene in Japanese cases. Neuroscience Research, 2022, , .	1.0	2
3	The molecular pathogenesis of repeat expansion diseases. Biochemical Society Transactions, 2022, 50, 119-134.	1.6	11
4	Emerging roles of extracellular vesicles in polyglutamine diseases: Mutant protein transmission, therapeutic potential, and diagnostics. Neurochemistry International, 2022, 157, 105357.	1.9	5
5	Alternative mitochondrial quality control mediated by extracellular release. Autophagy, 2021, 17, 2962-2974.	4.3	53
6	Go-sha-jinki-Gan Alleviates Inflammation in Neurological Disorders via p38-TNF Signaling in the Central Nervous System. Neurotherapeutics, 2021, 18, 460-473.	2.1	6
7	Protein Aggregation Inhibitors as Disease-Modifying Therapies for Polyglutamine Diseases. Frontiers in Neuroscience, 2021, 15, 621996.	1.4	19
8	Divergent CPEB prion-like domains reveal different assembly mechanisms for a generic amyloid-like fold. BMC Biology, 2021, 19, 43.	1.7	16
9	Insight Into Spinocerebellar Ataxia Type 31 (SCA31) From Drosophila Model. Frontiers in Neuroscience, 2021, 15, 648133.	1.4	7
10	Precise CAG repeat contraction in a Huntington's Disease mouse model is enabled by gene editing with SpCas9-NG. Communications Biology, 2021, 4, 771.	2.0	20
11	The porphyrin TMPyP4 inhibits elongation during the noncanonical translation of the FTLD/ALS-associated GGGGCC repeat in the C9orf72 gene. Journal of Biological Chemistry, 2021, 297, 101120.	1.6	17
12	Small molecule targeting r(UGGAA)n disrupts RNA foci and alleviates disease phenotype in Drosophila model. Nature Communications, 2021, 12, 236.	5.8	39
13	ALS-linked FUS mutations dysregulate C-quadruplex-dependent liquid–liquid phase separation and liquid-to-solid transition. Journal of Biological Chemistry, 2021, 297, 101284.	1.6	28
14	Structurally Distinct α‧ynuclein Fibrils Induce Robust Parkinsonian Pathology. Movement Disorders, 2020, 35, 256-267.	2.2	20
15	Generation of Common Marmoset Model Lines of Spinocerebellar Ataxia Type 3. Frontiers in Neuroscience, 2020, 14, 548002.	1.4	8
16	Arginine is a disease modifier for polyQ disease models that stabilizes polyQ protein conformation. Brain, 2020, 143, 1811-1825.	3.7	20
17	Arylsulfatase A, a genetic modifier of Parkinson's disease, is an α-synuclein chaperone. Brain, 2019, 142, 2845-2859.	3.7	44
18	Lipids as Trans-Acting Effectors for α-Synuclein in the Pathogenesis of Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 693.	1.4	15

#	Article	IF	CITATIONS
19	E46K mutant α-synuclein is more degradation resistant and exhibits greater toxic effects than wild-type α-synuclein in Drosophila models of Parkinson's disease. PLoS ONE, 2019, 14, e0218261.	1.1	10
20	Parkinson's disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17963-17969.	3.3	103
21	Ultrasonication-based rapid amplification of α-synuclein aggregates in cerebrospinal fluid. Scientific Reports, 2019, 9, 6001.	1.6	28
22	Sleep Disturbance as a Potential Modifiable Risk Factor for Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 803.	1.8	69
23	Molecular Mechanisms and Future Therapeutics for Spinocerebellar Ataxia Type 31 (SCA31). Neurotherapeutics, 2019, 16, 1106-1114.	2.1	17
24	Supplemental Treatment for Huntington's Disease with miR-132 that Is Deficient in Huntington's Disease Brain. Molecular Therapy - Nucleic Acids, 2018, 11, 79-90.	2.3	42
25	Pathological role of lipid interaction with α-synuclein in Parkinson's disease. Neurochemistry International, 2018, 119, 97-106.	1.9	53
26	Parkinson's disease-linked DNAJC13 mutation aggravates alpha-synuclein-induced neurotoxicity through perturbation of endosomal trafficking. Human Molecular Genetics, 2018, 27, 823-836.	1.4	39
27	Repeat Expansion Disease Models. Advances in Experimental Medicine and Biology, 2018, 1076, 63-78.	0.8	9
28	Hippo, Drosophila MST, is a novel modifier of motor neuron degeneration induced by knockdown of Caz, Drosophila FUS. Experimental Cell Research, 2018, 371, 311-321.	1.2	14
29	Developing biomarkers for neurodegenerative diseases using genetically-modified common marmoset models. Neural Regeneration Research, 2018, 13, 1189.	1.6	3
30	Overexpression of , , improves motor neuron degeneration induced by knockdown of ,. American Journal of Neurodegenerative Disease, 2018, 7, 11-31.	0.1	7
31	Chronic sleep fragmentation exacerbates amyloid β deposition in Alzheimer's disease model mice. Neuroscience Letters, 2017, 653, 362-369.	1.0	39
32	Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31. Neuron, 2017, 94, 108-124.e7.	3.8	114
33	Generation of transgenic marmosets using a tetracyclin-inducible transgene expression system as a neurodegenerative disease modelâ€. Biology of Reproduction, 2017, 97, 772-780.	1.2	41
34	Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases. Brain Sciences, 2017, 7, 128.	1.1	44
35	Transgenic Monkey Model of the Polyglutamine Diseases Recapitulating Progressive Neurological Symptoms. ENeuro, 2017, 4, ENEURO.0250-16.2017.	0.9	66
36	Molecular Basis of Orb2 Amyloidogenesis and Blockade of Memory Consolidation. PLoS Biology, 2016, 14, e1002361.	2.6	77

#	Article	IF	CITATIONS
37	Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Scientific Reports, 2016, 6, 31172.	1.6	33
38	Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Scientific Reports, 2015, 5, 16102.	1.6	13
39	Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson's disease patients. Scientific Reports, 2015, 5, 17625.	1.6	75
40	p62 Plays a Protective Role in the Autophagic Degradation of Polyglutamine Protein Oligomers in Polyglutamine Disease Model Flies. Journal of Biological Chemistry, 2015, 290, 1442-1453.	1.6	53
41	Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2497-506.	3.3	153
42	Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference. Molecular Therapy - Nucleic Acids, 2015, 4, e241.	2.3	59
43	Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant α-synuclein and aggravates neurodegeneration in a <i>Drosophila</i> model of Parkinson's disease. Human Molecular Genetics, 2015, 24, 6675-6686.	1.4	81
44	Identification of ter94, Drosophila VCP, as a strong modulator of motor neuron degeneration induced by knockdown of Caz, Drosophila FUS. Human Molecular Genetics, 2014, 23, 3467-3480.	1.4	36
45	VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Neurobiology of Disease, 2014, 71, 1-13.	2.1	158
46	Peptide-Based Therapeutic Approaches for Treatment of the Polyglutamine Diseases. Current Medicinal Chemistry, 2014, 21, 2575-2582.	1.2	9
47	<scp>TDP</scp> â€43 associates with stalled ribosomes and contributes to cell survival during cellular stress. Journal of Neurochemistry, 2013, 126, 288-300.	2.1	61
48	Inhibition of Protein Misfolding/Aggregation Using Polyglutamine Binding Peptide QBP1 as a Therapy for the Polyglutamine Diseases. Neurotherapeutics, 2013, 10, 440-446.	2.1	30
49	Na+/H+ Exchangers Induce Autophagy in Neurons and Inhibit Polyglutamine-Induced Aggregate Formation. PLoS ONE, 2013, 8, e81313.	1.1	9
50	Calcium leak through ryanodine receptor is involved in neuronal death induced by mutant huntingtin. Biochemical and Biophysical Research Communications, 2012, 429, 18-23.	1.0	54
51	Hsp40 Gene Therapy Exerts Therapeutic Effects on Polyglutamine Disease Mice via a Non-Cell Autonomous Mechanism. PLoS ONE, 2012, 7, e51069.	1.1	38
52	Knockdown of the Drosophila Fused in Sarcoma (FUS) Homologue Causes Deficient Locomotive Behavior and Shortening of Motoneuron Terminal Branches. PLoS ONE, 2012, 7, e39483.	1.1	66
53	Parkinson's disease-associated mutations in α-synuclein and UCH-L1 inhibit the unconventional secretion of UCH-L1. Neurochemistry International, 2011, 59, 251-258.	1.9	8
54	<i>α</i> -Synuclein Transgenic <i>Drosophila</i> As a Model of Parkinson's Disease and Related Synucleinopathies. Parkinson's Disease, 2011, 2011, 1-7.	0.6	29

#	Article	IF	CITATIONS
55	Genetic and clinical analysis in a Chinese parkinsonism-predominant spinocerebellar ataxia type 2 family. Journal of Human Genetics, 2011, 56, 330-334.	1.1	8
56	Induction of Molecular Chaperones as a Therapeutic Strategy for the Polyglutamine Diseases. Current Pharmaceutical Biotechnology, 2010, 11, 188-197.	0.9	70
57	Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nature Biotechnology, 2010, 28, 256-263.	9.4	215
58	Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Human Molecular Genetics, 2009, 18, 621-631.	1.4	76
59	Structure–activity relationship study on polyglutamine binding peptide QBP1. Bioorganic and Medicinal Chemistry, 2009, 17, 1259-1263.	1.4	21
60	Surface plasmon resonance characterization of specific binding of polyglutamine aggregation inhibitors to the expanded polyglutamine stretch. Biochemical and Biophysical Research Communications, 2009, 378, 634-639.	1.0	14
61	Delivery of the aggregate inhibitor peptide QBP1 into the mouse brain using PTDs and its therapeutic effect on polyglutamine disease mice. Neuroscience Letters, 2009, 449, 87-92.	1.0	44
62	Molecular Pathogenesis of Protein Misfolding Diseases: Pathological Molecular Environments Versus Quality Control Systems Against Misfolded Proteins. Journal of Biochemistry, 2009, 146, 751-756.	0.9	50
63	ER stress is the initial response to polyglutamine toxicity in PC12 cells. Biochemical and Biophysical Research Communications, 2008, 377, 550-555.	1.0	15
64	Heat Shock Transcription Factor 1-activating Compounds Suppress Polyglutamine-induced Neurodegeneration through Induction of Multiple Molecular Chaperones. Journal of Biological Chemistry, 2008, 283, 26188-26197.	1.6	187
65	Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Human Molecular Genetics, 2008, 17, 345-356.	1.4	219
66	Suppression of Mutant Huntingtin Aggregate Formation by Cdk5/p35 through the Effect on Microtubule Stability. Journal of Neuroscience, 2008, 28, 8747-8755.	1.7	41
67	Conformational Changes and Aggregation of Expanded Polyglutamine Proteins as Therapeutic Targets of the Polyglutamine Diseases: Exposed β-Sheet Hypothesis. Current Pharmaceutical Design, 2008, 14, 3267-3279.	0.9	60
68	Protein Transduction Domain-mediated Delivery of QBP1 Suppresses Polyglutamine-induced Neurodegeneration In Vivo. Molecular Therapy, 2007, 15, 303-309.	3.7	51
69	Detection of Polyglutamine Protein Oligomers in Cells by Fluorescence Correlation Spectroscopy. Journal of Biological Chemistry, 2007, 282, 24039-24048.	1.6	89
70	A toxic monomeric conformer of the polyglutamine protein. Nature Structural and Molecular Biology, 2007, 14, 332-340.	3.6	296
71	Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of α-dystroglycan. Biochemical and Biophysical Research Communications, 2006, 350, 935-941.	1.0	69
72	Cytoprotective effect of novel histone deacetylase inhibitors against polyglutamine toxicity. Neuroscience Letters, 2006, 392, 213-215.	1.0	11

#	Article	IF	CITATIONS
73	Multiple candidate gene analysis identifies α-synuclein as a susceptibility gene for sporadic Parkinson's disease. Human Molecular Genetics, 2006, 15, 1151-1158.	1.4	210
74	Humanin Attenuates Apoptosis Induced by DRPLA Proteins With Expanded Polyglutamine Stretches. Journal of Molecular Neuroscience, 2005, 25, 165-170.	1.1	33
75	Experimental hyperhomocysteinemia impairs coronary flow velocity reserve. International Journal of Cardiology, 2005, 104, 163-169.	0.8	15
76	Alternative splicing regulates the transcriptional activity ofDrosophilaheat shock transcription factor in response to heat/cold stress. FEBS Letters, 2005, 579, 3842-3848.	1.3	87
77	Effects of fukutin deficiency in the developing mouse brain. Neuromuscular Disorders, 2005, 15, 416-426.	0.3	43
78	Disruption of the toxic conformation of the expanded polyglutamine stretch leads to suppression of aggregate formation and cytotoxicity. Biochemical and Biophysical Research Communications, 2004, 317, 1200-1206.	1.0	26
79	Fukuyamaâ€ŧype congenital muscular dystrophy (FCMD) and αâ€dystroglycanopathy. Congenital Anomalies (discontinued), 2003, 43, 97-104.	0.3	50
80	Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Human Molecular Genetics, 2003, 12, 1253-1259.	1.4	122
81	Inhibition of Polyglutamine Protein Aggregation and Cell Death by Novel Peptides Identified by Phage Display Screening. Journal of Biological Chemistry, 2000, 275, 10437-10442.	1.6	166
82	Polyglutamine Domain Proteins with Expanded Repeats Bind Neurofilament, Altering the Neurofilament Network. Annals of the New York Academy of Sciences, 1999, 893, 192-201.	1.8	10
83	The effect of dehydroepiandrosterone sulfate administration to patients with multi-infarct dementia. Journal of the Neurological Sciences, 1999, 162, 69-73.	0.3	28
84	Clinical and molecular genetic study in seven Japanese families with spinocerebellar ataxia type 6. Journal of the Neurological Sciences, 1998, 157, 52-59.	0.3	33
85	Molecular Cloning and Expression of a Novel Peptide (LN1) Gene: Reduced Expression in the Renal Cortex of Lupus Nephritis in MRL/lpr Mouse. Biochemical and Biophysical Research Communications, 1996, 229, 355-360.	1.0	8
86	Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system. FEBS Letters, 1993, 336, 317-322.	1.3	43
87	Human peripheral blood lymphocytes express D5 dopamine receptor gene and transcribe the two pseudogenes. FEBS Letters, 1992, 314, 23-25.	1.3	80
88	Identification of glycolipid receptors forHelicobacter pyloriby TLC-immunostaining. FEBS Letters, 1991, 282, 385-387.	1.3	153
89	Isolation and Characterization of a Monosialosylgangliopentaosyl Ceramide from Xenopus laevis Oocyte1. Journal of Biochemistry, 1991, 110, 412-416.	0.9	20
90	Multiple Neurite Formation in Neuroblastoma Cell Lines by Griseolic Acid, a Potent Inhibitor of Cyclic Nucleotide Phosphodiesterases. Journal of Neurochemistry, 1991, 57, 556-561.	2.1	20

#	Article	IF	CITATIONS
91	Modulation of Intracerebral Glycosidase Activities by Intraperitoneal Administration of Glycosidase Inhibitors Journal of Clinical Biochemistry and Nutrition, 1991, 10, 197-208.	0.6	0
92	Tetrasialoganglioside GQ1b Reactive Monoclonal Antibodies: Their Characterization and Application for Quantification of GQ1b in Some Cell Lines of Neuronal and Adrenal Origin(S). Journal of Neurochemistry, 1990, 54, 513-517.	2.1	18
93	Characteristic binding of human plasma apolipoprotein B to gangliotetraosylceramide and gangliotriaosylceramide. FEBS Journal, 1990, 194, 507-511.	0.2	4
94	Diacylglycerol, but not inositol 1,4,5-trisphosphate, accounts for platelet-derived growth factor-stimulated proliferation of BALB 3T3 cells. Journal of Cellular Physiology, 1989, 140, 432-438.	2.0	23
95	Involvement of the acyl chain of ceramide in carbohydrate recognition by an anti-glycolipid monoclonal antibody: the case of an anti-melanoma antibody, M2590, to GM3-ganglioside. Glycoconjugate Journal, 1989, 6, 551-560.	1.4	29
96	Monoclonal antibody to galactosylceramide: discrimination of structural difference in the ceramide moiety. FEBS Letters, 1989, 258, 230-232.	1.3	30
97	Bioactive Gangliosideâ€Mediated Carbohydrate Recognition in Coupling with Ectoâ€Protein Phosphorylation. Novartis Foundation Symposium, 1989, 145, 119-134.	1.2	5
98	Synthetic Sialyl Compounds as Well as Natural Gangliosides Induce Neuritogenesis in a Mouse Neuroblastoma Cell Line (Neuro2a). Journal of Neurochemistry, 1988, 50, 414-423.	2.1	133
99	Selective expression of cholera toxin-receptor in rat medullary thymocytes Cell Structure and Function, 1987, 12, 339-344.	0.5	3
100	TLC immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids. FEBS Letters, 1986, 201, 229-232.	1.3	70
101	Presence of a substance crossreacting with cortical alveolar material in "yolk vesicles―of growing oocytes ofOryzias latipes. The Journal of Experimental Zoology, 1986, 238, 261-265.	1.4	14
102	Distribution of gentamicin by immunofluorescence in the guinea pig inner ear. Archives of Oto-rhino-laryngology, 1985, 242, 257-264.	0.5	37