
Cameron F Holder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7677389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano, 2019, 13, 7359-7365.	14.6	662
2	General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 12798-12803.	8.0	256
3	Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chemistry of Materials, 2017, 29, 950-957.	6.7	173
4	Partial Etching of Al from MoAlB Single Crystals To Expose Catalytically Active Basal Planes for the Hydrogen Evolution Reaction. Chemistry of Materials, 2017, 29, 8953-8957.	6.7	110
5	Multi-Step Topochemical Pathway to Metastable Mo ₂ AlB ₂ and Related Two-Dimensional Nanosheet Heterostructures. Journal of the American Chemical Society, 2019, 141, 10852-10861.	13.7	84
6	Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nature Chemistry, 2020, 12, 284-293.	13.6	73
7	Intermetallic Ni ₂ Ta Electrocatalyst for the Oxygen Evolution Reaction in Highly Acidic Electrolytes. Inorganic Chemistry, 2018, 57, 6010-6015.	4.0	61
8	Thermoelectric Performance of Tetrahedrite Synthesized by a Modified Polyol Process. Chemistry of Materials, 2017, 29, 1656-1664.	6.7	32
9	Defect-mediated selective hydrogenation of nitroarenes on nanostructured WS ₂ . Chemical Science, 2019, 10, 10310-10317.	7.4	30
10	Phase-Selective Solution Synthesis of Perovskite-Related Cesium Cadmium Chloride Nanoparticles. Inorganic Chemistry, 2020, 59, 11688-11694.	4.0	30
11	Seeded Growth of Metal Nitrides on Noble-Metal Nanoparticles To Form Complex Nanoscale Heterostructures. Chemistry of Materials, 2019, 31, 4605-4613.	6.7	21
12	Colloidal Nanoparticles of a Metastable Copper Selenide Phase with Near-Infrared Plasmon Resonance. Chemistry of Materials, 2020, 32, 10227-10234.	6.7	19
13	<i>In Situ</i> Evolution of Ru ₄ Al ₁₃ Crystals into a Highly Active Catalyst for the Hydrogen Evolution Reaction. Chemistry of Materials, 2021, 33, 7124-7131.	6.7	9
14	Comparative growth mechanism study for two thermoelectric compounds. Nanomaterials and Energy, 2014, 3, 206-214.	0.2	4
15	Bulkâ€immiscible AgRh Alloy Nanoparticles as a Highly Active Electrocatalyst for the Hydrogen Evolution Reaction. ChemNanoMat, 2020, 6, 1320-1324.	2.8	3