
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7676680/publications.pdf Version: 2024-02-01



DETED I O'RDIEN

| #  | Article                                                                                                                                                                                                                                            | IF                 | CITATIONS           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 1  | Methotrexate induced mitochondrial injury and cytochrome c release in rat liver hepatocytes. Drug and Chemical Toxicology, 2018, 41, 51-61.                                                                                                        | 2.3                | 54                  |
| 2  | Risk factors for colorectal cancer in man induce aberrant crypt foci in rats: Preliminary findings.<br>Nutrition and Cancer, 2016, 68, 94-104.                                                                                                     | 2.0                | 8                   |
| 3  | Design of Hybrid MnO <sub>2</sub> â€Polymerâ€Lipid Nanoparticles with Tunable Oxygen Generation Rates<br>and Tumor Accumulation for Cancer Treatment. Advanced Functional Materials, 2015, 25, 1858-1872.                                          | 14.9               | 182                 |
| 4  | Hybrid Nanoparticles: Design of Hybrid MnO2-Polymer-Lipid Nanoparticles with Tunable Oxygen<br>Generation Rates and Tumor Accumulation for Cancer Treatment (Adv. Funct. Mater. 12/2015).<br>Advanced Functional Materials, 2015, 25, 1857-1587.   | 14.9               | 8                   |
| 5  | Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes. Chemico-Biological Interactions, 2015, 234, 96-104.                            | 4.0                | 57                  |
| 6  | Evaluation of Azathioprine-Induced Cytotoxicity in an <i>In Vitro</i> Rat Hepatocyte System. BioMed Research International, 2014, 2014, 1-7.                                                                                                       | 1.9                | 16                  |
| 7  | Glyoxal and methylglyoxal: Autoxidation from dihydroxyacetone and polyphenol cytoprotective antioxidant mechanisms. Chemico-Biological Interactions, 2013, 202, 267-274.                                                                           | 4.0                | 13                  |
| 8  | Acrolein and chloroacetaldehyde: An examination of the cell and cell-free biomarkers of toxicity.<br>Chemico-Biological Interactions, 2013, 202, 259-266.                                                                                          | 4.0                | 35                  |
| 9  | A-CD Estrogens. I. Substituent Effects, Hormone Potency, and Receptor Subtype Selectivity in a New<br>Family of Flexible Estrogenic Compounds. Journal of Medicinal Chemistry, 2011, 54, 433-448.                                                  | 6.4                | 22                  |
| 10 | Rescuing hepatocytes from iron-catalyzed oxidative stress using vitamins B1 and B6. Toxicology in Vitro, 2011, 25, 1114-1122.                                                                                                                      | 2.4                | 19                  |
| 11 | Metabolic mechanisms of methanol/formaldehyde in isolated rat hepatocytes: Carbonyl-metabolizing enzymes versus oxidative stress. Chemico-Biological Interactions, 2011, 191, 308-314.                                                             | 4.0                | 38                  |
| 12 | Differences in glyoxal and methylglyoxal metabolism determine cellular susceptibility to protein carbonylation and cytotoxicity. Chemico-Biological Interactions, 2011, 191, 322-329.                                                              | 4.0                | 38                  |
| 13 | Cytotoxic effects of polychlorinated biphenyl hydroquinone metabolites in rat hepatocytes. Journal of Applied Toxicology, 2010, 30, 163-171.                                                                                                       | 2.8                | 10                  |
| 14 | Cytoprotection by almond skin extracts or catechins of hepatocyte cytotoxicity induced by<br>hydroperoxide (oxidative stress model) versus glyoxal or methylglyoxal (carbonylation model).<br>Chemico-Biological Interactions, 2010, 185, 101-109. | 4.0                | 26                  |
| 15 | Hepatocyte or serum albumin protein carbonylation by oxidized fructose metabolites: Glyceraldehyde or glycolaldehyde as endogenous toxins?. Chemico-Biological Interactions, 2010, 188, 31-37.                                                     | 4.0                | 14                  |
| 16 | Hepatocyte cytotoxicity induced by hydroperoxide (oxidative stress model) or glyoxal (carbonylation) Tj ETQq0<br>324-331.                                                                                                                          | 0 0 rgBT /(<br>4.0 | Overlock 10 T<br>21 |
| 17 | Cytoprotective mechanisms of carbonyl scavenging drugs in isolated rat hepatocytes.<br>Chemico-Biological Interactions, 2009, 178, 317-323.                                                                                                        | 4.0                | 39                  |
|    |                                                                                                                                                                                                                                                    |                    |                     |

18Amodiaquine-induced oxidative stress in a hepatocyte inflammation model. Toxicology, 2009, 256,<br/>101-109.4.231

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preventing cell death induced by carbonyl stress, oxidative stress or mitochondrial toxins with vitamin B antiâ€ACE agents. Molecular Nutrition and Food Research, 2008, 52, 379-385.                                                      | 3.3 | 30        |
| 20 | Tetramethylphenylenediamine-induced hepatocyte cytotoxicity caused by lysosomal labilisation and redox cycling with oxygen activation. Chemico-Biological Interactions, 2008, 172, 39-47.                                                  | 4.0 | 6         |
| 21 | Accelerated Cytotoxic Mechanism Screening of Hydralazine Using an in Vitro Hepatocyte Inflammatory<br>Cell Peroxidase Model. Chemical Research in Toxicology, 2008, 21, 904-910.                                                           | 3.3 | 13        |
| 22 | Copper-catalyzed ascorbate oxidation results in glyoxal/AGE formation and cytotoxicity. Molecular<br>Nutrition and Food Research, 2007, 51, 445-455.                                                                                       | 3.3 | 17        |
| 23 | Prevention of hydrogen sulfide (H2S)-induced mouse lethality and cytotoxicity by hydroxocobalamin (vitamin B12a). Toxicology, 2007, 242, 16-22.                                                                                            | 4.2 | 71        |
| 24 | Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content. Chemico-Biological<br>Interactions, 2007, 165, 146-154.                                                                                                         | 4.0 | 29        |
| 25 | Structure–activity relationships for halobenzene induced cytotoxicity in rat and human hepatoctyes.<br>Chemico-Biological Interactions, 2007, 165, 165-174.                                                                                | 4.0 | 41        |
| 26 | Molecular cytotoxic mechanisms of catecholic polychlorinated biphenyl metabolites in isolated rat hepatocytes. Chemico-Biological Interactions, 2007, 167, 184-192.                                                                        | 4.0 | 20        |
| 27 | Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chemico-Biological Interactions, 2006, 163, 94-112.                                                                                  | 4.0 | 347       |
| 28 | Glyoxal markedly compromises hepatocyte resistance to hydrogen peroxide. Biochemical<br>Pharmacology, 2006, 71, 1610-1618.                                                                                                                 | 4.4 | 28        |
| 29 | Application of quantitative structure–toxicity relationships for acute NSAID cytotoxicity in rat<br>hepatocytes. Chemico-Biological Interactions, 2005, 151, 177-191.                                                                      | 4.0 | 43        |
| 30 | The biosynthesis of ascorbate protects isolated rat hepatocytes from cumene hydroperoxide-mediated oxidative stress. Free Radical Biology and Medicine, 2005, 38, 867-873.                                                                 | 2.9 | 12        |
| 31 | Peroxidases: a role in the metabolism and side effects of drugs. Drug Discovery Today, 2005, 10, 617-625.                                                                                                                                  | 6.4 | 68        |
| 32 | Drug-induced mitochondrial toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 655-669.                                                                                                                                   | 3.3 | 149       |
| 33 | Aldehyde Sources, Metabolism, Molecular Toxicity Mechanisms, and Possible Effects on Human Health.<br>Critical Reviews in Toxicology, 2005, 35, 609-662.                                                                                   | 3.9 | 590       |
| 34 | The effects of partial thiamin deficiency and oxidative stress (i.e., glyoxal and methylglyoxal) on the<br>levels of α-oxoaldehyde plasma protein adducts in Fischer 344 rats. FEBS Letters, 2005, 579, 5596-5602.                         | 2.8 | 24        |
| 35 | Application of Quantitative Structure-Toxicity Relationships for the Comparison of the Cytotoxicity<br>of 14 p-Benzoquinone Congeners in Primary Cultured Rat Hepatocytes Versus PC12 Cells. Toxicological<br>Sciences, 2004, 81, 148-159. | 3.1 | 71        |
| 36 | Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine, 2004, 37, 287-303.                                                      | 2.9 | 876       |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The cytotoxic mechanism of glyoxal involves oxidative stress. Biochemical Pharmacology, 2004, 68, 1433-1442.                                                                                                           | 4.4  | 146       |
| 38 | Quantitative structure toxicity relationships for catechols in isolated rat hepatocytes.<br>Chemico-Biological Interactions, 2004, 147, 297-307.                                                                       | 4.0  | 39        |
| 39 | Human and animal hepatocytes in vitro with extrapolation in vivo. Chemico-Biological Interactions, 2004, 150, 97-114.                                                                                                  | 4.0  | 77        |
| 40 | H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology, 2004, 203, 69-76.                                                                                  | 4.2  | 182       |
| 41 | Metabolism, not autoxidation, plays a role in alpha-oxoaldehyde- and reducing sugar-induced<br>erythrocyte GSH depletion: relevance for diabetes mellitus. Molecular and Cellular Biochemistry,<br>2003, 252, 331-338. | 3.1  | 47        |
| 42 | Effects of phosphodiesterase 3,4,5 inhibitors on hepatocyte cAMP levels, glycogenolysis,<br>gluconeogenesis and susceptibility to a mitochondrial toxin. Molecular and Cellular Biochemistry,<br>2003, 252, 205-211.   | 3.1  | 80        |
| 43 | Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radical<br>Biology and Medicine, 2003, 34, 243-253.                                                                             | 2.9  | 205       |
| 44 | Modulating carbonyl cytotoxicity in intact rat hepatocytes by inhibiting carbonyl-metabolizing enzymes. I. Aliphatic alkenals. Chemico-Biological Interactions, 2003, 143-144, 107-117.                                | 4.0  | 23        |
| 45 | Quantitative structure toxicity relationships for phenols in isolated rat hepatocytes.<br>Chemico-Biological Interactions, 2003, 145, 213-223.                                                                         | 4.0  | 89        |
| 46 | Metabolism of caffeic acid by isolated rat hepatocytes and subcellular fractions. Toxicology Letters, 2002, 133, 141-151.                                                                                              | 0.8  | 62        |
| 47 | Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free<br>Radical Biology and Medicine, 2002, 32, 2-10.                                                                     | 2.9  | 100       |
| 48 | Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology, 2002, 177, 91-104.                                                                        | 4.2  | 467       |
| 49 | Catechin Metabolism:  Glutathione Conjugate Formation Catalyzed by Tyrosinase, Peroxidase, and<br>Cytochrome P450. Chemical Research in Toxicology, 2001, 14, 841-848.                                                 | 3.3  | 87        |
| 50 | Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nature Medicine, 2001, 7, 814-820.                                                                         | 30.7 | 235       |
| 51 | Cytochrome P450 2E1 metabolically activates propargyl alcohol: propiolaldehyde-induced hepatocyte cytotoxicity. Chemico-Biological Interactions, 2001, 130-132, 931-942.                                               | 4.0  | 20        |
| 52 | The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes. Chemico-Biological Interactions, 2001, 130-132, 285-296.                                       | 4.0  | 169       |
| 53 | Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radical Biology and Medicine, 2001, 30, 370-382.                                         | 2.9  | 186       |
| 54 | A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology, 2000, 143, 263-273.                                                                                                                     | 4.2  | 246       |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Contrasting role of Na+ ions in modulating Cu+2 or Cd+2 induced hepatocyte toxicity.<br>Chemico-Biological Interactions, 2000, 126, 159-169.                                            | 4.0 | 36        |
| 56 | Peroxidases. Chemico-Biological Interactions, 2000, 129, 113-139.                                                                                                                       | 4.0 | 228       |
| 57 | Superoxide radical scavenging and attenuation of hypoxia-reoxygenation injury by neurotransmitter ferric complexes in isolated rat hepatocytes. Neuroscience Letters, 2000, 296, 37-40. | 2.1 | 21        |
| 58 | Catecholic iron complexes as cytoprotective superoxide scavengers against hypoxia:reoxygenation injury in isolated hepatocytes. Biochemical Pharmacology, 1998, 56, 825-830.            | 4.4 | 33        |
| 59 | The Involvement of Cytochrome P450 Peroxidase in the Metabolic Bioactivation of Cumene<br>Hydroperoxide by Isolated Rat Hepatocytes. Chemical Research in Toxicology, 1996, 9, 924-931. | 3.3 | 16        |
| 60 | The Involvement of Cytochrome P4502E1 in 2â€Bromoethanolâ€Induced Hepatocyte Cytotoxicity. Basic and Clinical Pharmacology and Toxicology, 1996, 78, 241-248.                           | 0.0 | 7         |
| 61 | 1-Bromoalkanes as new potent nontoxic glutathione depletors in isolated rat hepatocytes.<br>Biochemical and Biophysical Research Communications, 1991, 179, 436-441.                    | 2.1 | 105       |
| 62 | The Adriamycin (doxorubicin)-induced inactivation of cytochrome c oxidase depends on the presence of iron or copper. Xenobiotica, 1989, 19, 231-241.                                    | 1.1 | 15        |
| 63 | Currentin vitro Models to Study Drug-Induced Liver Injury. , 0, , 1-55.                                                                                                                 |     | 3         |
| 64 | Human and Animal-Based Differences in Hepatic Xenobiotic Metabolism and Toxicity. , 0, , 537-561.                                                                                       |     | 0         |
| 65 | Tetrahydropapaveroline, an Endogenous Dicatechol Isoquinoline Neurotoxin. , 0, , 733-746.                                                                                               |     | 0         |
| 66 | Appendix: Questions for Discussion. , 0, , 907-913.                                                                                                                                     |     | 0         |
| 67 | Genotoxicity of Endogenous Estrogens. , 0, , 859-879.                                                                                                                                   |     | 0         |
| 68 | Glyceraldehyde-Related Reaction Products. , 0, , 213-225.                                                                                                                               |     | 0         |