
## Miguel Rebollo-Hernanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7676290/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose<br>Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways. Antioxidants, 2022, 11,<br>136.                       | 2.2 | 14        |
| 2  | Designer food and feeds from underutilized fruits and vegetables. , 2022, , 165-182.                                                                                                                                           |     | 0         |
| 3  | Vasoactive Properties of a Cocoa Shell Extract: Mechanism of Action and Effect on Endothelial<br>Dysfunction in Aged Rats. Antioxidants, 2022, 11, 429.                                                                        | 2.2 | 13        |
| 4  | Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate<br>Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Frontiers in Nutrition, 2022, 9,<br>866233.           | 1.6 | 11        |
| 5  | Gastrointestinal Digestion and Absorption of Antioxidant Phenolic Compounds and Caffeine from the<br>Coffee Pulp under Simulated Conditions. , 2022, 12, .                                                                     |     | 0         |
| 6  | Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food and Function, 2021, 12, 1097-1110.                               | 2.1 | 26        |
| 7  | Role of anthocyanins in oxidative stress and the prevention of cancer in the digestive system. , 2021, , 265-280.                                                                                                              |     | 1         |
| 8  | Investigating edible insects as a sustainable food source: nutritional value and techno-functional and physiological properties. Food and Function, 2021, 12, 6309-6322.                                                       | 2.1 | 12        |
| 9  | Revalorization of Coffee Husk: Modeling and Optimizing the Green Sustainable Extraction of Phenolic<br>Compounds. Foods, 2021, 10, 653.                                                                                        | 1.9 | 33        |
| 10 | Phytochemicals from Cocoa Shell Protect Mitochondrial Function and Alleviate Oxidative Stress in<br>Hepatocytes via Regulation of ERK and PI3K-AKT Pathways. Medical Sciences Forum, 2021, 2, .                                | 0.5 | 1         |
| 11 | Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Separation and Purification Technology, 2021, 270, 118779.                                      | 3.9 | 50        |
| 12 | Critical Evaluation of Coffee Pulp as an Innovative Antioxidant Dietary Fiber Ingredient: Nutritional<br>Value, Functional Properties, and Acute and Sub-Chronic Toxicity. Proceedings (mdpi), 2021, 70, 65.                   | 0.2 | 10        |
| 13 | Evaluation of the Hypolipidemic Properties of Cocoa Shell after Simulated Digestion Using In Vitro<br>Techniques and a Cell Culture Model of Non-Alcoholic Fatty Liver Disease. Proceedings (mdpi), 2021,<br>70, 58.           | 0.2 | 2         |
| 14 | Hypolipidemic Properties of Cocoa and Coffee By-Products after Simulated Gastrointestinal Digestion:<br>A Comparative Approach. Biology and Life Sciences Forum, 2021, 7, 1.                                                   | 0.6 | 0         |
| 15 | Role of the Phytochemicals from the Cocoa Shell on the Prevention of Metabolic Syndrome by an<br>Integrated Network Pharmacology Analysis. Biology and Life Sciences Forum, 2021, 7, .                                         | 0.6 | 0         |
| 16 | Comparative Investigation on Coffee Cascara from Dry and Wet Methods: Chemical and Functional Properties. , 2021, 6, .                                                                                                         |     | 2         |
| 17 | Caffeine, but not other phytochemicals, in mate tea (Ilex paraguariensis St. Hilaire) attenuates<br>high-fat-high-sucrose-diet-driven lipogenesis and body fat accumulation. Journal of Functional Foods,<br>2020, 64, 103646. | 1.6 | 27        |
| 18 | Spent coffee (Coffea arabica L.) grounds positively modulate indicators of colonic microbial activity.<br>Innovative Food Science and Emerging Technologies, 2020, 60, 102286.                                                 | 2.7 | 17        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Simulated gastrointestinal digestion influences the <em>in vitro</em> hypolipidemic properties of coffee pulp, a potential ingredient for the prevention of non-alcoholic fatty liver disease. , 2020, , .                                              |     | 2         |
| 20 | Fibroblast Growth Factor 21 Signaling Activation by Selected Bioactive Compounds from Cocoa Shell<br>Modulated Metabolism and Mitochondrial Function in Hepatocytes. Current Developments in<br>Nutrition, 2020, 4, nzaa045_092.                        | 0.1 | 3         |
| 21 | Validation of Cocoa Shell as a Novel Antioxidant Dietary Fiber Food Ingredient: Nutritional Value,<br>Functional Properties, and Safety. Current Developments in Nutrition, 2020, 4, nzaa052_042.                                                       | 0.1 | 6         |
| 22 | Spent coffee ( <i>Coffea arabica</i> L.) grounds promote satiety and attenuate energy intake: A pilot study. Journal of Food Biochemistry, 2020, 44, e13204.                                                                                            | 1.2 | 9         |
| 23 | Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in<br>Rats. Foods, 2020, 9, 330.                                                                                                                      | 1.9 | 29        |
| 24 | Bioaccessibility of Phenolic Compounds from Cocoa Shell Subjected to In Vitro Digestion and Its Antioxidant Activity in Intestinal and Hepatic Cells. Medical Sciences Forum, 2020, 2, .                                                                | 0.5 | 2         |
| 25 | Assessment of the Nutritional Value, Techno-Functional, and In Vitro Physiological Properties of Six<br>Edible Insects. Proceedings (mdpi), 2020, 70, .                                                                                                 | 0.2 | 0         |
| 26 | Relationship of the Phytochemicals from Coffee and Cocoa By-Products with their Potential to<br>Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants, 2019, 8, 279.                                                                         | 2.2 | 44        |
| 27 | Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation,<br>mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling<br>pathways. Food and Chemical Toxicology, 2019, 132, 110672. | 1.8 | 71        |
| 28 | Antioxidant dietary fiber isolated from spent coffee ( <i>Coffea arabica</i> L.) grounds improves chronotype and circadian locomotor activity in young adults. Food and Function, 2019, 10, 4546-4556.                                                  | 2.1 | 21        |
| 29 | Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic<br>compounds from coffee parchment and their comprehensive analysis. Food and Function, 2019, 10,<br>4739-4750.                                               | 2.1 | 30        |
| 30 | Inhibition of the Maillard Reaction by Phytochemicals Composing an Aqueous Coffee Silverskin<br>Extract via a Mixed Mechanism of Action. Foods, 2019, 8, 438.                                                                                           | 1.9 | 28        |
| 31 | Cocoa Shell Phenolic Compounds Preserve Mitochondrial Function and Insulin Sensitivity in<br>Adipocytes by Attenuating Their Inflammatory Interplay with Macrophages (FS15-06-19). Current<br>Developments in Nutrition, 2019, 3, nzz031.FS15-06-19.    | 0.1 | Ο         |
| 32 | Front cover: Cocoa Shell Aqueous Phenolic Extract Preserves Mitochondrial Function and Insulin<br>Sensitivity by Attenuating Inflammation between Macrophages and Adipocytes In Vitro. Molecular<br>Nutrition and Food Research, 2019, 63, 1970023.     | 1.5 | 0         |
| 33 | Cocoa Shell Aqueous Phenolic Extract Preserves Mitochondrial Function and Insulin Sensitivity by<br>Attenuating Inflammation between Macrophages and Adipocytes In Vitro. Molecular Nutrition and<br>Food Research, 2019, 63, e1801413.                 | 1.5 | 34        |
| 34 | Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization.<br>Food Research International, 2019, 122, 105-113.                                                                                                  | 2.9 | 87        |
| 35 | CHAPTER 2. Coffee Antioxidants in Chronic Diseases. , 2019, , 20-56.                                                                                                                                                                                    |     | 1         |
| 36 | CHAPTER 6. Melatonin. Food Chemistry, Function and Analysis, 2019, , 129-151.                                                                                                                                                                           | 0.1 | 1         |

| #  | Article                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | CHAPTER 10. Thermal Processing of Legumes. Food Chemistry, Function and Analysis, 2019, , 215-234. | 0.1 | 2         |

38 In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

| 39 | Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. LWT<br>- Food Science and Technology, 2018, 89, 65-73.                                                                   | 2.5       | 36            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 40 | The fermented non-digestible fraction of spent coffee grounds induces apoptosis in human colon cancer cells (SW480). Journal of Functional Foods, 2017, 30, 237-246.                                                    | 1.6       | 26            |
| 41 | Microbiota source impact in vitro metabolite colonic production and anti-proliferative effect of<br>spent coffee grounds on human colon cancer cells (HT-29). Food Research International, 2017, 97,<br>191-198.        | 2.9       | 23            |
| 42 | Use of spent coffee grounds as food ingredient in bakery products. Food Chemistry, 2017, 216, 114-122.                                                                                                                  | 4.2       | 158           |
| 43 | Black bean coats: New source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage. Food Chemistry, 2016, 212, 561-570.                                                                       | 4.2       | 62            |
| 44 | Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chemistry, 2016, 212, 282-290.                                                               | 4.2       | 108           |
| 45 | Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food and Function, 2016, 7, 1438-1445.                                                                                   | 2.1       | 31            |
| 46 | Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology, 2015, 45, 24-36.                                                                                        | 7.8       | 416           |
| 47 | Impact of Melatonin Enrichment during Germination of Legumes on Bioactive Compounds and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2015, 63, 7967-7974.                                          | 2.4       | 38            |
| 48 | Effect of Illumination on the Content of Melatonin, Phenolic Compounds, and Antioxidant Activity<br>During Germination of Lentils ( <i>Lens culinaris</i> L.) and Kidney Beans ( <i>Phaseolus vulgaris</i> ) Tj ETQq0 0 | 0 rgBT /O | verkæck 10 Tf |

| 49 | Minor components of pulses and their potential impact on human health. Food Research<br>International, 2010, 43, 461-482.                                                            | 2.9 | 396 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 50 | Regulation of lipid and glucose metabolism in hepatocytes by phytochemicals from coffee by-products and prevention of non-alcoholic fatty liver disease <em>in vitro</em> . , 0, , . |     | 2   |