Klaus van Leyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7675438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mammalian lipoxygenases and their biological relevance. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 308-330.	1.2	449
2	A function for lipoxygenase in programmed organelle degradation. Nature, 1998, 395, 392-395.	13.7	271
3	Cell–cell Signaling in the Neurovascular Unit. Neurochemical Research, 2007, 32, 2032-2045.	1.6	222
4	Baicalein and 12/15-Lipoxygenase in the Ischemic Brain. Stroke, 2006, 37, 3014-3018.	1.0	210
5	Structure of the Semaphorin-3A Receptor Binding Module. Neuron, 2003, 39, 589-598.	3.8	150
6	Astrocytic Induction of Matrix Metalloproteinase-9 and Edema in Brain Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 460-468.	2.4	145
7	The role of Ca2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium, 2018, 70, 47-55.	1.1	135
8	12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat. Cell Metabolism, 2019, 30, 768-783.e7.	7.2	132
9	Protecting Against Cerebrovascular Injury. Stroke, 2008, 39, 2538-2543.	1.0	130
10	Neuronal Production of Lipocalin-2 as a Help-Me Signal for Glial Activation. Stroke, 2014, 45, 2085-2092.	1.0	117
11	Experimental Model of Warfarin-Associated Intracerebral Hemorrhage. Stroke, 2008, 39, 3397-3404.	1.0	96
12	Inhibition of 12/15â€lipoxygenase as therapeutic strategy to treat stroke. Annals of Neurology, 2013, 73, 129-135.	2.8	96
13	12/15â€Lipoxygenase targets neuronal mitochondria under oxidative stress. Journal of Neurochemistry, 2009, 111, 882-889.	2.1	95
14	Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reproductive BioMedicine Online, 2004, 8, 24-33.	1.1	92
15	The future of neuroprotection in stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 129-135.	0.9	82
16	Potent and Selective Inhibitors of Human Reticulocyte 12/15-Lipoxygenase as Anti-Stroke Therapies. Journal of Medicinal Chemistry, 2014, 57, 4035-4048.	2.9	79
17	Interaction of the Eukaryotic Elongation Factor 1A with Newly Synthesized Polypeptides. Journal of Biological Chemistry, 2002, 277, 18545-18551.	1.6	76
18	Novel lipoxygenase inhibitors as neuroprotective reagents. Journal of Neuroscience Research, 2008, 86, 904-909.	1.3	73

KLAUS VAN LEYEN

#	Article	IF	CITATIONS
19	A Novel Hydrogen Sulfide-releasing N-Methyl-d-Aspartate Receptor Antagonist Prevents Ischemic Neuronal Death. Journal of Biological Chemistry, 2012, 287, 32124-32135.	1.6	73
20	Edaravone, a free radical scavenger, protects components of the neurovascular unit against oxidative stress in vitro. Brain Research, 2010, 1307, 22-27.	1.1	69
21	Increased Nuclear Apoptosis-Inducing Factor after Transient Focal Ischemia: A 12/15-Lipoxygenase-dependent Organelle Damage Pathway. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1157-1167.	2.4	67
22	Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Letters, 2001, 489, 51-54.	1.3	63
23	Involvement of ERK MAP kinase in endoplasmic reticulum stress in SH-SY5Y human neuroblastoma cells. Journal of Neurochemistry, 2004, 89, 232-239.	2.1	61
24	Proteasome inhibition protects HT22 neuronal cells from oxidative glutamate toxicity. Journal of Neurochemistry, 2005, 92, 824-830.	2.1	60
25	Increased 12/15-Lipoxygenase Leads to Widespread Brain Injury Following Global Cerebral Ischemia. Translational Stroke Research, 2017, 8, 194-202.	2.3	47
26	CPEB4 Is a Cell Survival Protein Retained in the Nucleus upon Ischemia or Endoplasmic Reticulum Calcium Depletion. Molecular and Cellular Biology, 2010, 30, 5658-5671.	1.1	44
27	Transbilayer movement of Glc-P-dolichol and its function as a glucosyl donor: protein-mediated transport of a water-soluble analog into sealed ER vesicles from pig brain. Glycobiology, 1998, 8, 1195-1205.	1.3	42
28	STAT-Dependent Upregulation of 12/15-Lipoxygenase Contributes to Neuronal Injury after Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 2043-2051.	2.4	40
29	12/15-Lipoxygenase Expression Is Increased in Oligodendrocytes and Microglia of Periventricular Leukomalacia. Developmental Neuroscience, 2013, 35, 140-154.	1.0	39
30	Lipoxygenase: An Emerging Target for Stroke Therapy. CNS and Neurological Disorders - Drug Targets, 2013, 12, 191-199.	0.8	39
31	CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 781-793.	2.4	35
32	12/15-Lipoxygenase Inhibition or Knockout Reduces Warfarin-Associated Hemorrhagic Transformation After Experimental Stroke. Stroke, 2017, 48, 445-451.	1.0	35
33	Following experimental stroke, the recovering brain is vulnerable to lipoxygenaseâ€dependent semaphorin signaling. FASEB Journal, 2013, 27, 437-445.	0.2	34
34	Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nature Biomedical Engineering, 2020, 4, 801-813.	11.6	34
35	Rapid Reversal of Anticoagulation Reduces Hemorrhage Volume in a Mouse Model of Warfarin-Associated Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1015-1021.	2.4	31
36	Gammaâ€glutamylcysteine ethyl ester protects cerebral endothelial cells during injury and decreases blood–brain barrier permeability after experimental brain trauma. Journal of Neurochemistry, 2011, 118, 248-255.	2.1	23

KLAUS VAN LEYEN

#	Article	IF	CITATIONS
37	Annexin A2 Plus Low-Dose Tissue Plasminogen Activator Combination Attenuates Cerebrovascular Dysfunction After Focal Embolic Stroke of Rats. Translational Stroke Research, 2017, 8, 549-559.	2.3	23
38	Altered epididymal sperm maturation and cytoplasmic droplet migration in subfertile male Alox15 mice. Cell and Tissue Research, 2010, 340, 569-581.	1.5	21
39	The potential of 12/15-lipoxygenase inhibitors in stroke therapy. Future Medicinal Chemistry, 2014, 6, 1853-1855.	1.1	18
40	CD47 deficiency improves neurological outcomes of traumatic brain injury in mice. Neuroscience Letters, 2017, 643, 125-130.	1.0	18
41	Cholesterol and Steroid Synthesizing Smooth Endoplasmic Reticulum of Adrenocortical Cells Contains High Levels of Proteins Associated with the Translocation Channel. Endocrinology, 2005, 146, 4234-4249.	1.4	17
42	Bioactive Flavonoids and Catechols as Hif1 and Nrf2 Protein Stabilizers - Implications for Parkinson's Disease. , 2016, 7, 745.		17
43	Impact of 12/15-Lipoxygenase on Brain Injury After Subarachnoid Hemorrhage. Stroke, 2019, 50, 520-523.	1.0	17
44	Intravenous tPA Therapy Does Not Worsen Acute Intracerebral Hemorrhage in Mice. PLoS ONE, 2013, 8, e54203.	1.1	17
45	Translational Insights into Traumatic Brain Injury Occurring during Dabigatran or Warfarin Anticoagulation. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 870-875.	2.4	16
46	A potent and selective inhibitor targeting human and murine 12/15-LOX. Bioorganic and Medicinal Chemistry, 2016, 24, 1183-1190.	1.4	15
47	Dual Antiplatelet Therapy Increases Hemorrhagic Transformation Following Thrombolytic Treatment in Experimental Stroke. Stroke, 2019, 50, 3650-3653.	1.0	15
48	Genetic ablation and short-duration inhibition of lipoxygenase results in increased macroautophagy. Experimental Cell Research, 2014, 321, 276-287.	1.2	13
49	Intracerebral Hemorrhage Formation Under Direct Oral Anticoagulants. Stroke, 2019, 50, 1034-1042.	1.0	11
50	Combination Low-Dose Tissue-Type Plasminogen Activator Plus Annexin A2 for Improving Thrombolytic Stroke Therapy. Frontiers in Cellular Neuroscience, 2015, 9, 397.	1.8	10
51	Complete Golgi passage of glycotripeptides generated in the endoplasmic reticulum of mammalian cells. FEBS Letters, 1994, 352, 211-215.	1.3	9
52	Opening the time window. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2539-2540.	2.4	9
53	Contributions of 12/15-Lipoxygenase to Bleeding in the Brain Following Ischemic Stroke. Advances in Experimental Medicine and Biology, 2019, 1161, 125-131.	0.8	9
54	Glycotripeptides are released by yeast but not by mammalian microsomes. FEBS Letters, 1994, 355, 147-150.	1.3	8

Klaus van Leyen

#	Article	IF	CITATIONS
55	Dolichyl Phosphate-Dependent Glycosyltransferases Utilize Truncated Cofactors. Biological Chemistry Hoppe-Seyler, 1991, 372, 1021-1026.	1.4	7
56	Measurement of Platelet Function in an Experimental Stroke Model With Aspirin and Clopidogrel Treatment. Frontiers in Neurology, 2020, 11, 85.	1.1	7
57	Effects of ML351 and tissue plasminogen activator combination therapy in a rat model of focal embolic stroke. Journal of Neurochemistry, 2021, 157, 586-598.	2.1	4
58	Neuroprotective effects of over-expressing tissue inhibitor of metalloproteinase TIMP-1. Journal of Neurotrauma, 0, , 110306202455053.	1.7	4
59	From cell to cell: The breakdown of intercellular connectivity after stroke and how to regain contact. Brain Research, 2015, 1623, 1-2.	1.1	2
60	Thrombolysis in acute stroke under dual antiplatelet therapy: perspectives arising from translational studies. Neural Regeneration Research, 2021, 16, 113.	1.6	0
61	Abstract WMP115: Developing A New Drug For Ischemic Stroke. Stroke, 2022, 53, .	1.0	Ο