
Johann Lüder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 11448-11459.	5.2	88
2	Influence of Electron Correlation on the Electronic Structure and Magnetism of Transition-Metal Phthalocyanines. Journal of Chemical Theory and Computation, 2016, 12, 1772-1785.	2.3	54
3	Charge and Discharge Processes and Sodium Storage in Disodium Pyridineâ€2,5â€Dicarboxylate Anode—Insights from Experiments and Theory. Advanced Energy Materials, 2018, 8, 1701572.	10.2	40
4	Comparison of van der Waals corrected and sparse-matter density functionals for the metal-free phthalocyanine/gold interface. Physical Review B, 2014, 89, .	1.1	38
5	A Tröger's Base-Derived Covalent Organic Polymer Containing Carbazole Units as a High-Performance Supercapacitor. Polymers, 2021, 13, 1385.	2.0	32
6	Doping of active electrode materials for electrochemical batteries: an electronic structure perspective. MRS Communications, 2017, 7, 523-540.	0.8	27
7	Micromachining of ferrous metal with an ion implanted diamond cutting tool. Carbon, 2019, 152, 598-608.	5.4	27
8	Polyaniline and CN-functionalized polyaniline as organic cathodes for lithium and sodium ion batteries: a combined molecular dynamics and density functional tight binding study in solid state. Physical Chemistry Chemical Physics, 2018, 20, 232-237.	1.3	27
9	The electronic characterization of biphenylene—Experimental and theoretical insights from core and valence level spectroscopy. Journal of Chemical Physics, 2015, 142, 074305.	1.2	24
10	Nature of the bias-dependent symmetry reduction of iron phthalocyanine on Cu(111). Physical Review B, 2015, 92, .	1.1	22
11	Understanding doping strategies in the design of organic electrode materials for Li and Na ion batteries: an electronic structure perspective. Physical Chemistry Chemical Physics, 2017, 19, 13195-13209.	1.3	21
12	Theory of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi>-edge spectroscopy of strongly correlated systems. Physical Review B, 2017, 96, .</mml:math 	1.1	21
13	Conclusively Addressing the CoPc Electronic Structure: A Joint Gas-Phase and Solid-State Photoemission and Absorption Spectroscopy Study. Journal of Physical Chemistry C, 2017, 121, 26372-26378.	1.5	19
14	Photoelectron and Absorption Spectroscopy Studies of Metal-Free Phthalocyanine on Au(111): Experiment and Theory. Journal of Physical Chemistry C, 2013, 117, 7018-7025.	1.5	17
15	Electronic structure investigation of biphenylene films. Journal of Chemical Physics, 2017, 146, 054705.	1.2	16
16	Experimental and theoretical study of electronic structure of lutetium bi-phthalocyanine. Journal of Chemical Physics, 2013, 138, 234701.	1.2	15
17	Many-body effects and excitonic features in 2D biphenylene carbon. Journal of Chemical Physics, 2016, 144, 024702.	1.2	14
18	First-Principle Insights Into Molecular Design for High-Voltage Organic Electrode Materials for Mg Based Batteries. Frontiers in Chemistry, 2020, 8, 83.	1.8	14

Johann Lüder

#	Article	IF	CITATIONS
19	Materials Design and Optimization for Next-Generation Solar Cell and Light-Emitting Technologies. Journal of Physical Chemistry Letters, 2021, 12, 4638-4657.	2.1	12
20	Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections. Journal of Chemical Physics, 2014, 140, 124711.	1.2	11
21	Characterization of gas phase iron phthalocyanine with Xâ€ray photoelectron and absorption spectroscopies. Physica Status Solidi (B): Basic Research, 2015, 252, 1259-1265.	0.7	10
22	Nonparametric Local Pseudopotentials with Machine Learning: A Tin Pseudopotential Built Using Gaussian Process Regression. Journal of Physical Chemistry A, 2020, 124, 11111-11124.	1.1	10
23	When the Grafting of Double Decker Phthalocyanines on Si(100)-2 × 1 Partly Affects the Molecular Electronic Structure. Journal of Physical Chemistry C, 2016, 120, 14270-14276.	1.5	9
24	Disodium Pyridine Dicarboxylate vs Disodium Terephthalate as Anode Materials for Organic Na Ion Batteries: Effect of Molecular Structure on Voltage from the Molecular Modeling Perspective. MRS Advances, 2017, 2, 3231-3235.	0.5	9
25	Modeling of plasmonic properties of nanostructures for next generation solar cells and beyond. Advances in Physics: X, 2021, 6, .	1.5	8
26	New Quadratic Self-Assembly of Double-Decker Phthalocyanine on Gold(111) Surface: From Macroscopic to Microscopic Scale. Journal of Physical Chemistry C, 2018, 122, 26480-26488.	1.5	6
27	Ligand Effects on the Linear Response Hubbard U: The Case of Transition Metal Phthalocyanines. Journal of Physical Chemistry A, 2019, 123, 3214-3222.	1.1	6
28	Determining electronic properties from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi> -edge x-ray absorption spectra of transition metal compounds with artificial neural networks. Physical Review B, 2021, 103, .</mml:math 	1.1	6
29	High Tolerance of Double-Decker Phthalocyanine toward Molecular Oxygen. Journal of Physical Chemistry C, 2018, 122, 20244-20251.	1.5	3
30	Grafting, self-organization and reactivity of double-decker rare-earth phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1523-1534.	0.4	2
31	Grafting, self-organization and reactivity of double-decker rare-earth phthalocyanine. , 2021, , 932-943.		0
32	Modeling Methods for Plasmonic Effects in Halide Perovskite Based Systems for Photonics Applications. , 2021, , 1-52.		0